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. with focus on univariate, non-uniform piecewise cubic polynomial curves in one, two and three
spatial dimensions, as well as rotation splines.

Inspired by [Mil].



1 Polynomial Curves in Euclidean Space

The following section was generated from doc/euclidean/polynomials.ipynb .........oooiiiiiiiiiiiii

1.1 Polynomial Parametric Curves

[1]: import sympy as sp
sp.init_printing(order='grevlex')

[2]: t = sp.symbols('t')

The coefficients are written as bold letters, because they are elements of a vector space (e.g. R®).

We are using bold symbols because apart from simple scalars (for one-dimensional functions), these
symbols can also represent vectors in two- or three-dimensional space.

[3]: coefficients = sp.Matrix(sp.symbols('a:dbm') [::-1])
coefficients

[3]: [d

c
b
a

Monomial basis functions:

[4]: b_monomial = sp.Matrix([t**3, t**x2, t, 1]).T
b_monomial

[l B2t 1]
[5]: b_monomial.dot(coefficients)
51 A +ct> +bt+a

This is a cubic polynomial in its canonical form (monomial basis).

Monomial basis functions:

[6]: from helper import plot_basis

[7]: plot_basis(*b_monomial, labels=b_monomial)


https://github.com/AudioSceneDescriptionFormat/splines/blob/8007a37/doc/euclidean/polynomials.ipynb

weight

It doesn’t look like much, but every conceivable cubic polynomial can be formulated as exactly one
linear combination of those basis functions.

Example:

[8]: example_polynomial = (2 * t — 1)*x3 + (t + 1)**2 - 6 x t + 1
example_polynomial

B @2t =1)° + (t+1)* —6t +1

[9]: sp.plot(example_polynomial, (t, O, 1));
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[9]: <sympy.plotting.plot.Plot at 0x7f039f456908>

Can be re-written with monomial basis functions:

[10]: example_polynomial.expand()
[10]: 8 — 117 +2t +1

[]:

The following section was generated from doc/euclidean/lagrange.iPynb ..........oouuiiiiit ettt

1.2 Lagrange Interpolation
Before diving into splines, let’s have a look at an arguably simpler interpolation method using poly-
nomials: Lagrange interpolation®.

This is easy to implement, but as we will see, it has quite severe limitations, which will motivate us to
look into splines later.

[1]: import matplotlib.pyplot as plt
import numpy as np

* https:/ /en.wikipedia.org /wiki/Lagrange_polynomial


https://github.com/AudioSceneDescriptionFormat/splines/blob/8007a37/doc/euclidean/polynomials.ipynb
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[5]:
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[6]:

[7]:
[7]:

[8]:

[9]:

One-dimensional Example

Assume we have N time instants ¢;, with 0 <i < N:

ts = -1.5, 0.5, 1.7, 3, 4

. and for each time instant we are given an associated value x;:
xs = 2, -1, 1.3, 3.14, 1
Our task is now to find a function that yields the given x; values for the given times f; and some
“reasonable” interpolated values when evaluated at time values in-between.

The idea of Lagrange interpolation is to create a separate polynomial for each of the N given time
instants, which will be weighted by the associated x. The final interpolation function is the weighted
sum of these N polynomials.

In order for this to actually work, the polynomials must fulfill the following requirements:
¢ Each polynomial must yield 1 when evaluated at its associated time t;.
¢ Each polynomial must yield 0 at all other instances in the set of given times.

To satisfy the second point, let’s create a product with a term for each of the relevant times and make
each of those factors vanish when evaluated at their associated time. As an example we look at the
basis for t3 = 3:

def maybe_polynomial 3(t):
t = np.asarray(t)
return (t - (-1.5)) * (t - 0.5) * (¢t - 1.7) *x (t - 4)

maybe_polynomial_ 3(ts)
array([ -0. , 0. , —0. , —14.625, 0. D

As we can see, this indeed fulfills the second requirement. Note that we were given 5 time instants,
but we need only 4 product terms (corresponding to the 4 roots of the polynomial).

Now, for the first requirement, we can divide each term to yield 1 when evaluated at ¢ = 3 (luckily,
this will not violate the second requirement). If each term is 1, the whole product will also be 1:

def polynomial 3(t):
t = np.asarray(t)
return (
(t - (-1.5)) / (3 - (-1.5)) *
(t - 0.5) / (3 -0.5) %
t-1.7/ @ -1.7) %
t -4 / (3 -4)

polynomial_ 3(ts)
array([ 0., -0., 0., 1., -0.1)

That's it!

To get a better idea what’s going on between the given time instances, let’s plot this polynomial (with
a little help from helper.py):

from helper import grid_lines

plot_times = np.linspace(ts[0], ts[-1], 100)


helper.py

[10]:

[11]:

[12]:

[13]:

plt.plot(plot_times, polynomial_3(plot_times))
grid_lines(ts, [0, 1])

-1.5 0.5 1.7 3.0 4.0

We can see from its shape that this is a polynomial of degree 4, which makes sense because the product
we are using has 4 terms containing one t each. We can also see that it has the value 0 at each of the
initially provided time instances ¢;, except for t3 = 3, where it has the value 1.

The above calculation can be easily generalized to be able to get any one of the set of polynomials
defined by an arbitrary list of time instants:

def lagrange polynomial (times, i, t):
"""i-th Lagrange polynomial for the given time values, evaluated at t."""
t = np.asarray(t)
product = np.multiply.reduce
return product ([
(t - times[jl) / (times[i] - times[jl)
for j in range(len(times))
if i 1= j
D

Now we can calculate and visualize all 5 polynomials for our 5 given time instants:

polys = np.column_stack([lagrange_polynomial(ts, i, plot_times)
for i in range(len(ts))])

plt.plot(plot_times, polys)
grid_lines(ts, [0, 11)



-1.5 0.5 1.7 3.0 4.0
Finally, the interpolated values can be obtained by applying the given x; values as weights to the
polynomials and summing everything together:

[14]: weighted_polys = polys * xs
[15]: interpolated = np.sum(weighted_polys, axis=-1)

[16]: plt.plot(plot_times, weighted_polys)
plt.plot(plot_times, interpolated, color='black', linestyle='dashed')
plt.scatter(ts, xs, color='black')
grid_lines(ts)

-1.5 0.5 1.7 3.0 4.0



[17]:

[18]:

[19]7:

Neville’s Algorithm

An alternative way to calculate interpolated values is Neville’s algorithm? (see also [BG88], figure 2).
We mention this algorithm mainly because it is referenced in the derivation of non-uniform Catmull-Rom
splines (page 70) and the description of the Barry—Goldman algorithm (page 74).

As main building block, we need a linear interpolation between two values in a given time interval:

def lerp(xs, ts, t):
"""Linear interpolation.

Returns the interpolated value at time *tx*,
given the two values *xs* at times *tsx*.

x_begin, x_end = xs
t_begin, t_end = ts
return (x_begin * (t_end - t) + x_end * (t - t_begin)) / (t_end - t_begin)

In each stage of the algorithm, linear interpolation is used to interpolate between adjacent values,
leading to one fewer value than in the stage before. The new values are used as input to the next stage
and so on. When there is only one value left, this value is the result.

The only tricky part is to choose the appropriate time interval for each interpolation. In the first
stage, the intervals between the given time values are used. In the second stage, each time interval is
combined with the following one, leading to one fewer time intervals in total. In the third stage, each
time interval is combined with the following two intervals, and so on until the last stage, where all
time intervals are combined into a single large interval.

def neville(xs, ts, t):
"""Lagrange interpolation using Neville's algorithm.

Returns the interpolated value at time(s) *t*,
given the values *xs* at times *ts*.

"

assert len(xs) == len(ts)
if not np.isscalar(t):
return np.array([neville(xs, ts, time) for time in t])
while len(xs) > 1:
step = len(ts) - len(xs) + 1
xs = [
lerp(*args, t)
for args in zip(zip(xs, xs[1:]), zip(ts, tslstep:]1))]
return xs[0]

plt.plot(plot_times, neville(xs, ts, plot_times))
plt.scatter(ts, xs)
grid_lines(ts)

2 https:/ /en.wikipedia.org/wiki/Neville%27s_algorithm
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Two-dimensional Example

Lagrange interpolation can of course also be used in higher-dimensional spaces. To show this, let’s
create a class:

[20]: class Lagrange:

def __init__(self, vertices, grid):
assert len(vertices) == len(grid)
self .vertices = np.array(vertices)
self.grid = list(grid)

def evaluate(self, t):
# Alternatively, we could simply use this one-liner:
#return neville(self.vertices, self.grid, t)
if not np.isscalar(t):
return np.array([self.evaluate(time) for time in t])
polys = [lagrange_polynomial(self.grid, i, t)
for i in range(len(self.grid))]
weighted_polys = self.vertices.T * polys
return np.sum(weighted_polys, axis=-1)

Since this class has the same interface as the splines that are discussed in the following sections, we
can use a spline helper function from helper.py for plotting:

[21]: from helper import plot_spline_2d

This time, we have a list of two-dimensional vectors and the same list of associated times as before:

[22]: 11 = Lagrange([(2, -3), (-1, 0), (1.3, 1), (3.14, 0), (1, -1D], ts)

[23]: plot_spline_2d(11)
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Runge’s Phenomenon

This seems to work quite well, but as indicated above, Lagrange implementation has a severe limita-
tion. This limitation gets more apparent when using more vertices, which leads to a higher-degree
polynomial.

[24]: vertices = [

(1, 0),
(1, 20,
(3, 0),
2, -1,
(2.5, 1.5),
(5, 2),
(6, 1),
(5, 0),
6, -2),
7, 2),
4, 4),

]

times = range(len(vertices))

[25]: 12 = Lagrange(vertices, times)
plot_spline_2d(12)

10
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Here we see a severe overshooting effect, most pronounced at the beginning and the end of the curve.
This effect is called Runge’s phenomenon?3.

Long story short, Lagrange interpolation is typically not usable for drawing curves. For comparison,
let’s use the same positions and time values and create a Catmull-Rom spline (page 52):

[26] : import splines
[27]: cr_spline = splines.CatmullRom(vertices, times)

[28]: plot_spline_2d(cr_spline)

4 .,

2 .r.... x......ooooooo .x:
.i )

This clearly doesn’t have the overshooting problem we saw above.

3 https:/ /en.wikipedia.org/wiki/Runge’s_phenomenon
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[17:

[27:

[3]:

[4]:

Note
The splines.CatmullRom (page 136) class uses “natural” end conditions (page 104) by default.

.................................................................................................... doc/euclidean/lagrange.ipynb ends here.

1.3 Hermite Splines

Hermite splines* (named after Charles Hermite®) are the building blocks for many other types of inter-
polating polynomial splines, for example natural splines (page 30) and Catmull-Rom splines (page 52).

A Python implementation of (cubic) Hermite splines is available in the splines. CubicHermite (page 136)
class.

The following section was generated from doc/euclidean/hermite-properties.ipynb ........ . ... o i

Properties of Hermite Splines

Hermite splines are interpolating polynomial splines, where for each polynomial segment, the desired
value at the start and end is given (obviously!), as well as the values of a certain number of derivatives
at the start and/or the end.

Most commonly, cubic (= degree 3) Hermite splines are used. Cubic polynomials have 4 coefficients to
be chosen freely, and those are determined for each segment of a cubic Hermite spline by providing 4
pieces of information: the function value and the first derivative, both at the beginning and the end of
the segment.

Other degrees of Hermite splines are possible (but much rarer), for example quintic (= degree 5)
Hermite splines, which are defined by the second derivatives at the start and end of each segment, on
top of the first derivatives and the function values (6 values in total).

Hermite splines with even degrees are probably still rarer. For example, quadratic (= degree 2) Hermite
splines can be constructed by providing the function values at both beginning and end of each seg-
ment, but only one first derivative, either at the beginning or at the end (leading to 3 values in total).
Make sure not to confuse them with quartic (= degree 4) Hermite splines, which are defined by 5 values
per segment: function value and first derivative at both ends, and one of the second derivatives.

However, cubic Hermite splines are so overwhelmingly common that they are often simply referred to
as Hermite splines.

From this point forward, we will only be considering cubic Hermite splines.

import splines

import matplotlib.pyplot as plt
import numpy as np

We import a few helper functions from helper.py:

from helper import plot_slopes_1d, plot_spline_2d, plot_tangents_2d, grid_lines

Let’s look at a one-dimensional spline first. We provide a list of values (to be interpolated) and a list
of associated parameter values (or time instances, if you will).

values = 2, 4, 3, 3
grid = 5, 7, 8, 10

4 https:/ /en.wikipedia.org/wiki/Cubic_Hermite_spline
5 https:/ /en.wikipedia.org/wiki/Charles_Hermite

12
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Since (cubic) Hermite splines ask for the first derivative at the beginning and end of each segment, we
provide a list of slopes (outgoing, incoming, outgoing, incoming, ...).

[5]: slopes = 0, 0, -1, 0.5, 1, 3

We are using the splines.CubicHermite (page 136) class to create the spline:

[6]: sl = splines.CubicHermite(values, slopes, grid=grid)
OK, let’s plot this one-dimensional spline, together with the given values and slopes.

[7]: times = np.linspace(grid[0], grid[-1], 100)

[8]: plt.plot(times, sl.evaluate(times))
plt.scatter(grid, values)
plot_slopes_ld(slopes, values, grid)
grid_lines(grid)

4.00 J
3.75
3.50
3.25
3.00
2.75
2.50
2.25

2.00 p

Let’s try a two-dimensional curve now (higher dimensions work similarly).

[9]: vertices = [
0, 0),
2, 0),
(1, 1),
]

The derivative of a curve is its tangent vector, so we provide a list of them (outgoing, incoming,
outgoing, incoming, ... ):

[10]: tangents = [

2, 1),
(0.1, 0.1),
(-0.5, 1),
(1, 0),

13



[11]: s2 = splines.CubicHermite(vertices, tangents)

[12]: plot_spline_2d(s2)
plot_tangents_2d(tangents, vertices)

1.0 :)(

0.6 A o

0.2 A

0.0 X

_0.2 .

0.00 0.25 0.50 0.75 1.00 1.25 1.50

If no parameter values are given (by means of the grid argument), the splines.CubicHermite (page 136)
class creates a uniform spline, i.e. all parameter intervals are automatically chosen to be 1. We can

create a non-uniform spline by providing our own parameter values:

[13]: grid = 0, 0.5, 3

Using the same vertices and tangents, we can clearly see how the new parameter values influence the

2.00

shape and the speed of the curve (the dots are plotted at equal time intervals!):

[14]: s3 = splines.CubicHermite(vertices, tangents, grid=grid)
plot_spline_2d(s3)
plot_tangents_2d(tangents, vertices)

14
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[3]:
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Hermite splines are by default C° continuous. If adjacent tangents are chosen to point into the same
direction, the spline becomes G! continuous.

If on top of having the same direction, adjacent tangents are chosen to have the same length, that makes
the spline C! continuous. An example for that are Catmull-Rom splines (page 52). Kochanek—Bartels
splines (page 9o) can also be C! continuous, but only if their “continuity” parameter C is o.

There is one unique choice of all of a cubic Hermite spline’s tangents (given certain end conditions
(page 104)) that leads to continuous second derivatives at all vertices, making the spline C? continuous.

This is what natural splines (page 30) are all about.
....................................................................................... doc/euclidean/hermite-properties.ipynb ends here.

The following section was generated from doc/euclidean/hermite-uniform.ipynb ........ ... oo

Uniform Cubic Hermite Splines

We derive the basis matrix as well as the basis polynomials for cubic (= degree 3) Hermite splines. The
derivations for other degrees is left as an exercise for the reader.

In this notebook, we consider uniform spline segments, i.e. the parameter in each segment varies from 0
to 1. The derivation for non-uniform cubic Hermite splines can be found in a separate notebook (page 24).

import sympy as sp
sp.init_printing(order='rev-lex')

We load a few tools from utility.py:

from utility import NamedExpression, NamedMatrix
t = sp.symbols('t')

We are considering a single cubic polynomial segment of a Hermite spline (which is sometimes called
a Ferguson cubic).

To simplify the indices in the following derivation, we are looking at the fifth polynomial segment p, ()
from x4 to x5, where 0 < t < 1. The results will be easily generalizable to an arbitrary polynomial
segment p;(t) from x; to x;;1.

15
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[4]:

[4]:

[5]:

[5]:

[6]:

[6]:

[7]:

[7]:

[8]:

[9]:

The polynomial has 4 coefficients, a4 to dy.

coefficients = sp.Matrix(sp.symbols('a:dbm4') [::-1])
coefficients

dy
C4
by
ay

Combined with the monomial basis . ..

b_monomial = sp.Matrix([t**3, t**x2, t, 1]).T
b_monomial

[ 2t 1]

... the coefficients form an expression for our polynomial segment p,(f):

p4 = NamedExpression('pbm4', b_monomial.dot(coefficients))
p4

py = dyt® +cgt® + byt + ay

For more information about polynomials, see Polynomial Parametric Curves (page 2).

Let’s also calculate the first derivative (a.k.a. velocity, a.k.a. tangent vector), while we are at it:

pd4 = p4.diff(t)
pd4

d
%p4 = 3d4t2 + 2¢4t + by

To generate a Hermite spline segment, we have to provide the value of the polynomial at the start and
end point of the segment (at times t = 0 and ¢t = 1, respectively). We also have to provide the first
derivative at those same points.

X4 = Pyli—o
X5 = Pyl

. d

4= iPs o
. d

X5 = ;P4 -

We call those 4 values the control values of the segment.

Evaluating the polynomial and its derivative at times 0 and 1 leads to 4 expressions for our 4 control
values:

x4 = p4.evaluated_at(t, 0).with_name('xbmd')
x5 = p4.evaluated_at(t, 1).with_name('xbm5")
xd4 = pd4.evaluated_at(t, 0).with_name('xdotbm4')
xd5 = pd4.evaluated_at(t, 1).with_name('xdotbm5')

display(x4, x5, xd4, xdb)

X4 = Ay
x5 =dys+cs+by+ ay

16



[10]:

[10]:

[11]:

[12]:

[12]:

[13]:

[13]:

[14]:

[15]:

[15]:

[16]:

X4 = by
X5 = 3dy + 2c4 + by

Given an input vector of control values ...

control_values_H = NamedMatrix(sp.Matrix([x4.name,
x5.name,
xd4 .name,
xd5.name]))
control _values_H.name

X4
X5
X4
X5

. we want to find a way to transform those into the coefficients of our cubic polynomial.

M _H = NamedMatrix(r'{M \text }', 4, 4)

coefficients H = NamedMatrix(coefficients, M_H.name * control values H.name)
coefficients H

dy X4
C4 X5
= MH .
by X4
a X5

This way, we can express our previously unknown coefficients in terms of the given control values.

However, in order to make it easy to determine the coefficients of the basis matrix My, we need the
equation the other way around (by left-multiplying by the inverse):

control_values_H.expr = M_H.name.I * coefficients
control values_H

Xy dy
X5 _ Mgt C4
Xy by
X5 a,

We can now insert the expressions for the control values that we obtained above ...

substitutions = x4, x5, xd4, xdb

control_values_H.subs_symbols (*substitutions)

ay dy
dy+cy+by+ay — Ml | e
by -H o,

3dy +2¢c4 + by ay

. and from this equation we can directly read off the matrix coefficients of My ~1:

M_H.I = sp.Matrix(

[[expr.coeff(cv) for cv in coefficients]

for expr in control_values_H.subs_symbols(*substitutions) .name])
M H.I

17



[16]:

[17]:

[18]:
[18]:

[19]:

[20]:

[20] :

[21]:

[22]:

A4}{71 =

W o = o
N O -~ O
=)
OO R

The same thing for copy & paste purposes:
print (_.expr)

Matrix([[0, 0, 0, 1], (1, 1, 1, 1], [0, O, 1, O], [3, 2, 1, 0]JD)

This transforms the coefficients of the polynomial into our control values, but we need it the other way
round, which we can simply get by inverting the matrix:

M_H
2 2 1 1
3 3 -2 -1
Ma=1¢o o 1 o
1 0 0 0

Again, for copy & paste:

print (_.expr)

Matrix([[2, -2, 1, 1], [-8, 3, -2, -1], [0, O, 1, 0], [1, O, O, O1I)
Multiplying the monomial basis with this matrix yields the Hermite basis polynomials:

b_H = NamedMatrix(r'{b_ \text ', b_monomial * M_H.expr)
b_H.factor().simplify().T

(—1+6*(1+2f)
T 2 (3-2t)
T p—140)?
2 (=1+1t)

from helper import plot_basis

plot_basis(*b_H.expr, labels=sp.symbols('xbm_i xbm_i+1 xdotbm_i xdotbm_i+1'))

18



[23]:

[23]:

[24]:

weight

Note that the basis function associated with x; has the value 1 at the beginning, while all others are 0
at that point. For this reason, the linear combination of all basis functions at t = 0 simply adds up to
the value x; (which is exactly what we wanted to happen!).

Similarly, the basis function associated with ¥; has a first derivative of 41 at the beginning, while all
others have a first derivative of 0. Therefore, the linear combination of all basis functions at t = 0 turns
out to have a first derivative of x; (what a coincidence!).

While t progresses towards 1, both functions must relinquish their influence to the other two basis
functions.

At the end (when t = 1), the basis function associated with x;,1 is the only one that has a non-zero
value. More concretely, it has the value 1. Finally, the basis function associated with ¥;, is the only
one with a non-zero first derivative. In fact, it has a first derivative of exactly +1 (the function values
leading up to that have to be negative because the final function value has to be 0).

This can be summarized by:

sp.-Matrix([[
b.subs(t, 0),
b.subs(t, 1),
b.diff (t).subs(t, 0),
b.diff (t).subs(t, 1),
] for b in b_H.expr])

0 00
0
1
0

oS o o

1 0
0 0
0 1

To quickly check whether the matrix My does what we expect, let’s plot an example segment:

import numpy as np

If we use the same API as for the other splines, we can reuse the helper functions for plotting from
helper.py.

19


helper.py

[25]: from helper import plot_spline_2d, plot_tangents_2d

[26] : class UniformHermiteSegment:
grid = 0, 1

def init_ (self, control values):
self.coeffs = sp.lambdify([], M_H.expr) () @ control_values

def evaluate(self, t):
t = np.expand_dims(t, -1)
return txx[3, 2, 1, 0] © self.coeffs

Note

The @ operator is used here to do NumPy’s matrix multiplication®.

(o, ol, [5, 1]
(2, 31, [0, -2]

[27]: vertices
tangents

[28]: s = UniformHermiteSegment ([*vertices, *tangents])

[29]: plot_spline_2d(s, chords=False)
plot_tangents_2d(tangents, vertices)

3.0

2.5 1

2.0 A

1.5 4

»®

1.0 o

0.5 A ¢

0.07 X

6 https:/ /numpy.org/doc/stable/reference/generated /numpy.matmul.html
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[30]:
[30]:

[31]:

[31]:

[32]:

[33]:

[33]:

Relation to Bézier Splines

Above, we were using two positions (start and end) and two tangent vectors (at those same two
positions) as control values:

control values_H.name

X4
X5
X4
X5

What about using four positions (and no tangent vectors) instead?

Let’s use the point #; as a “handle” (connected to x4) that controls the tangent vector. Same for &5
(connected to xs).

And since the tangents looked unwieldily long in the plot above (compared to the effect they have on
the shape of the curve), let’s put the handles only at a third of the length of the tangents, shall we?

~ .?'C4
Xy = x4+ 73
~ X5
X5 — X5 — ?

control_values_B = NamedMatrix(sp.Matrix([
x4 .name,
sp.Symbol('xtildebm4'),
sp.Symbol('xtildebmb5'),
x5 .name,
1), sp.Matrix([
x4 .name,
x4 .name + xd4.name / 3,
x5.name - xd5.name / 3,

x5.name,
1
control _values_B
X4 X4
X4 %%4—X4
5| —’23—5—1-3(5
x5 X5

Now let’s try to come up with a matrix that transforms our good old Hermite control values into our
new control points.

M_HtoB = NamedMatrix(r'{M \text{H$\to$B}}', 4, 4)

NamedMatrix(control values B.name, M_HtoB.name * control values H.name)

X4 X4
Xy X5
.| =M .

5 H—B %y
X5 X5

We can immediately read the matrix coefficients off the previous expression.
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[34]: M_HtoB.expr = sp.Matrix([[expr.coeff(cv) for cv in control_values_H.name]
for expr in control_values_B.expr])
M_HtoB.pull_out(sp.S.0ne / 3)

[34]: 300 O
1301 0
Muss=319 3 o —1
030 0

[35]: print(_.expr)

(1/3)*Matrix ([

(3, 0, 0, ol,
(3, 0, 1, ol,
[Oa 35 O} _1]:

(0, 3, 0, 0l

The inverse of this matrix transforms our new control points into Hermite control values:

[36]: M_BtoH = NamedMatrix(r'{M_\text{B$\to$H}}', M_HtoB.I.expr)

M_BtoH
[36] : 1 0 0 0
0 0 0 1

Mp-m=1_5 3 o o

0 0 -3 3

[37]: print(_.expr)
Matrix([[t, O, O, 0], [0, O, O, 1], [-3, 3, 0, 0], [0, O, -3, 3]1)

When we combine My with this new matrix, we get a matrix which leads us to a new set of basis
polynomials associated with the 4 control points.

[38]: M_B = NamedMatrix(r'{M \text +', M_H.name * M _BtoH.name)
M B

[38]: Mg = MuyMp_n

[39]: M_B = M_B.subs_symbols(M_H, M_BtoH).doit()

M B
[39] : -1 3 -3 1
3 -6 3 0

Ms=1 5 35 ¢ o

1 0 0 0

[40]: b_B = NamedMatrix(r'{b \text +', b_monomial * M_B.expr)

b B.T
[40] : 1-3t+32 -3
b T 3t — 61> + 313
L 312 — 313
t3

[41]: plot_basis(
*b_B.expr,
labels=sp.symbols('xbm_i xtildebm_i xtildebm_i+1 xbm_i+1'))
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[42]:

[43]:

[44] :

[44] :

weight

Those happen to be the cubic Bernstein polynomials and it turns out that we just invented Bézier curves!
See the section about Bézier/Bernstein splines (page 38) for more information about them.

We chose the additional control points to be located at 3 of the tangent vector. Let’s quickly visualize
this using the example from above and My_,p:

points = sp.lambdify([], M_HtoB.expr) () @ [*vertices, *tangents]
import matplotlib.pyplot as plt

plot_spline_2d(s, chords=False)

plot_tangents_2d(tangents, vertices)

plt.scatter (*points.T, marker='X', color='black')
plt.annotate(r'$\quad\tilde{\bf{x}}_0$"', points[1])
plt.annotate(r'$\tilde{\bf{x}}_1\quad$', points[2], ha='right');

Text (5.0, 1.6666666666666665, '$\\tilde{\\bf{x}}_1\\quad$')
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[1]:

[2]:

3.0 A
2.5 1
2.0 A
X]_ “
1.5 A
- ° ° ¢ * * e
Xo g %
1.0 A ® ° %
o
[ J
[ ]
0.5 A
[ ]
L ]
001 &
T T T T T T
0 1 2 3 4 5
........................................................................................... doc/euclidean/hermite-uniform.ipynb ends here.
The following section was generated from doc/euclidean/hermite-non-uniform.ipynb ..............ooiiiiiiiiiiiiiiiiiii ...

Non-Uniform Cubic Hermite Splines

We have already derived uniform cubic Hermite splines (page 15), where the parameter ¢ ranges from 0
to 1.

When we want to use non-uniform cubic Hermite splines, and therefore arbitrary ranges from ¢; to t; 1,
we have (at least) two possibilities:

® Do the same derivations as in the uniform case, except when we previously evaluated an expres-
sion at the parameter value t = 0, we now evaluate it at the value t = t;. Of course we do the
same witht =1 — t = ;1.

t—t;
tiv1—t
0 to 1) and then simply use the results from the uniform case.

® Re-scale the non-uniform parameter using t —

(which makes the new parameter go from

The first approach leads to more complicated expressions in the basis matrix and the basis polyno-
mials, but it has the advantage that the parameter value doesn’t have to be re-scaled each time when
evaluating the spline for a given parameter (which might be slightly more efficient).

The second approach has the problem that it doesn’t actually work correctly, but we will see that we
can make a slight adjustment to fix that problem (spoiler alert: we will have to multiply the tangent
vectors by A;).

We show the second approach here, but the first approach can be done very similarly, with only very
few changed steps. The appropriate changes are mentioned below.

import sympy as sp
sp.init_printing(order='rev-lex')

from utility import NamedExpression, NamedMatrix
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[3]:

[47:

[5]:

[6]:

[7]:
[7]:

[8]:

[8]:

[9]:

[10]:

[11]:

To simplify the indices in the following derivation, we are looking at the fifth polynomial segment
p(t) from x4 to x5, where t4 < t < t5. The results will be easily generalizable to an arbitrary
polynomial segment p;(t) from x; to x; .

t, t4, tb = sp.symbols('t t4:6")
coefficients = sp.Matrix(sp.symbols('a:dbm4')[::-1])

b_monomial = sp.Matrix([t**3, t**2, t, 1]).T
b_monomial.dot (coefficients)

: d4f3 + C4t2 + byt + ay

We use the humble cubic polynomial (with monomial basis) to represent our curve segment p,(t), but
we re-scale the parameter to map t; — 0 and t5 — 1:

p4 = NamedExpression('pbm4', _.subs(t, (¢t - t4) / (t5 - t4)))

If you don’t want to do the re-scaling, simply un-comment the next line!

#p4 = NamedExpression('pbm4', b_monomial.dot(coefficients))

Either way, this is our polynomial segment . ..

p4

dy(—ty +1)3 “ty ) by (—tgtt
_dy( 4+)+C4( 4+)+4( 4+1t)

+ as
(ts — ta)° (ts — ts)* t5 — fs

Py

. and it’s derivative/velocity/tangent vectors:

pdd = p4.diff(t)

pd4
i . 3dy (—t4 + i’)z Cy (—2t4 + Zf) by
at’s (ts — t4)° (ts — t4)° ts =ty

The next steps are very similar to what we did in the uniform case (page 15), except that we use f4 and
t5 instead of 0 and 1, respectively.

x4 = p4.evaluated_at(t, t4).with_name('xbmé')

x5 = p4.evaluated_at(t, t5).with_name('xbm5')

xd4 = pd4.evaluated_at(t, t4).with_name('xdotbmd')

xd5 = pd4.evaluated_at(t, t5).factor().with_name('xdotbm5')

To simplify things, we define a new symbol Ay = t5 — t4, representing the duration of the current
segment. However, we only use this for simplifying the display, further calculations are still carried
out with t;.

delta = {
t5 - t4: sp.Symbol('Deltad'),

display(x4, x5, xd4.subs(delta), xd5.subs(delta))
X4 = Ay
x5 =ds+cs+by+ ay
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[12]:

[13]:

[13]:

[14] :

[15]:

[15]:

[16]:

[16]:

[17]1:

[18]:
[18]:

[19]:

[20] :

. by
X4:A—4
. 3dy+2c4 + by

X5 A4

M_H = NamedMatrix(r'{M_{\text VA4RF, 4, 4)

control values H = NamedMatrix(

sp.Matrix([x4.name, x5.name, xd4.name, xd5.name]),

M _H.name.I * coefficients)
control_values_H

X4 dy
X5 —1 [ €4
|l =M

X4 HA b4
X5 a

substitutions = x4, x5, xd4, xd5

control_values_H.subs_symbols(*substitutions) .subs(delta)

as d4
dy+cs+by+ay 4 le
by = Mpg4 b
A, 4
3d4+2C4+b4 a4

Ay

M_H.T = sp.Matrix([

[expr.expand () .coeff(c) for ¢ in coefficients]

for expr in control_values_H.subs_symbols(*substitutions) .name])

M_H.I.subs(delta)

0 O

-1
Mpys " =

O O ==

1 1
0 0
3 2

print (_.expr)

Matrix([[0, O, O, 1], [1, 1, 1, 11, [0, O, 1/Delta4, 0],

~011)

M_H.factor () .subs(delta)

2 2 Ay Mg

-3 3 —2a, —A
Mua=1, Ay 0
1 0 0 0

print (_.expr)

[3/Delta4, 2/Delta4, 1/Delta4d,,

Matrix([[2, -2, Delta4, Delta4], [-3, 3, -2xDeltad4, -Deltad], [0, O, Delta4d, 0],

~011)

b_H = NamedMatrix(r'{b {\text ,4%F', b_monomial * M_H.expr)

b_H.factor() .subs(delta) .simplify().T
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[20]:

[21]:

[22] :

[23]:

[24]:

[25]:

[26]:

(=1+1)% (1+2f)

2
bH4T: t (3*21’)2
’ Agt (—=1+1)
At (=1 +1)

Those are the non-uniform Hermite basis functions. Not surprisingly, they are different for each seg-
ment, because generally the values A; are different in the non-uniform case.

To quickly check whether the matrix My 4 does what we expect, let’s plot an example segment:

import numpy as np

If we use the same API as for the other splines, we can reuse the helper functions for plotting from
helper.py:

from helper import plot_spline_2d, plot_tangents_2d

The following code re-scales the parameter with t = (t - begin) / (end - begin). If you did not
re-scale ¢ in the derivation above, you'll have to remove this line.

class HermiteSegment:

def __init__(self, control_values, begin, end):
array = sp.lambdify([t4, t5], M_H.expr) (begin, end)
self.coeffs = array @ control_values
self.grid = begin, end

def evaluate(self, t):
t = np.expand_dims(t, -1)
begin, end = self.grid
# If you derived M_H without re-scaling t, remove the following line:
t = (t - begin) / (end - begin)
return txx[3, 2, 1, 0] © self.coeffs

vertices = [0, 0], [5, 1]
tangents = [2, 3], [0, -2]

We can simulate the uniform case by specifying a parameter range from 0 to 1:

sl = HermiteSegment ([*vertices, *tangents], 0, 1)

plot_spline_2d(sl, chords=False)
plot_tangents_2d(tangents, vertices)
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helper.py

3.0

2.5 1

2.0 A

1.5 -

1.0 ° x

0.01 X

But other ranges should work as well:

[27]: s2 = HermiteSegment ([*vertices, *tangents], 3, 5)

[28]: plot_spline_2d(s2, chords=False)
plot_tangents_2d(tangents, vertices)

3.0 A
2.5 1

2.0 1

1.5 4 o * .
°
°
1.0 ° x
0.5 A ¢

0.09 X

If you did not re-scale t in the beginning of the derivation, you can use the matrix Mp; to calculate
the monomial coefficients of each segment (as shown in the example code above) and be done with it.
The following simplification does only apply if you did re-scale ¢.

If you did re-scale ¢, the basis matrix and the basis polynomials will look very similar to the uniform
case (page 15), but they are not quite the same. This means that simply re-scaling the parameter is not
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[29]:

[29]:

[30]:

[30]:

[31]:

enough to correctly use the uniform results for implementing non-uniform Hermite splines.

However, we can see that the only difference is that the components associated with x4 and #5 are
simply multiplied by A4. That means if we re-scale the parameter and multiply the given tangent
vectors by A;, we can indeed use the uniform workflow.

Just to make sure we are actually telling the truth, let’s check that the control values with scaled
tangent vectors . ..

control_values_H_scaled = sp.Matrix([x4.name,
x5 .name,
(t5 - t4) * xd4.name,
(t5 - t4) * xd5.name])
control values H scaled.subs(delta)

X4
X5
Ayxy
Ayxs

. really lead to the same result as when using the uniform basis matrix:

sp.simplify(sp.Eq(
M_H.expr * control_values_H.name,
sp.Matrix([[2, -2, 1, 1],
[-3, 3, -2, -11,
[0, 0, 1, 0],
[1, 0, 0, 0]1) * control values H_scaled))

True

The following line will fail if you did not rescale t:

assert _ == True

Long story short, to implement a non-uniform cubic Hermite spline segment, we can simply re-scale
the parameter to a range from 0 to 1 (by substituting ¢t — t,;:ﬁ r-), multiply both given tangent vectors
by A; = t;y1 —t; and then simply use the implementation of the uniform cubic Hermite spline segment.

Another way of looking at this is to consider the uniform polynomial segment u;(t) and its tangent

vector (i.e. first derivative) ug(t). If we want to know the tangent vector after substituting t — tgf" , We

have to use the chain rule” (with the inner derivative being %):

iu' t—t; _lu, t—t;
dat '\ A SN T\ A '

This means the tangent vectors have been shrunk by A;! If we want to maintain the original lengths of
our tangent vectors, we can simply scale them by A; beforehand.

...................................................................................... doc/euclidean/hermite-non-uniform.ipynb ends here.

7 https:/ /en.wikipedia.org/wiki/Chain_rule
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1.4 Natural Splines

TODO

Python implementation: splines.Natural (page 137)

https:/ /en.wikipedia.org/wiki/Spline_interpolation

https:/ /en.wikiversity.org /wiki/Cubic_Spline_Interpolation

https:/ /en.wiktionary.org/wiki/spline

https:/ /docs.scipy.org/doc/scipy /reference/generated /scipy.interpolate.CubicSpline.html

The following section was generated from doc/euclidean/natural-properties.ipynb .........ccouuiiiiiiiiiiiiiiieiiiiiiiiiii e,

Properties of Natural Splines

[1]: import splines

[2]: vertices = [
0, 0),
(1, 0),
2, 1),
3, 1,
]

splines.Natural (page 137)

[3]: s = splines.Natural (vertices)

helper.py

[4]: from helper import plot_spline_2d

[5]: plot_spline_2d(s)

1.50 -1
1.25 A
1.00 A x
0.75 A e
0.50 A o
0.25 A o
0.00 A
—0.25 A

—0.50 A
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helper.py

[6]: def plot_natural(xargs, *xkwargs):
plot_spline_2d(splines.Natural(*args, **kwargs), chords=False)

endconditions="'natural')

endconditions=[[0, 0], 'matural'l])
endconditions=[[1, -1], 'nmatural'])
endconditions=[[2, -2], 'nmatural'])

[7]: plot_natural(vertices,
plot_natural(vertices,
plot_natural(vertices,
plot_natural(vertices,

1.25
1.00 - X
0.75 - Y
0.50 - A
0.25 1
0.00 -

—-0.25 oo

—0.50 A

RSSO

x

1.5 2.0 2.5

[8]: plot_natural(vertices, endconditions='closed')

3.0

1.5

1.0 4 x

0.5 - . .o °

0.0 A X x
F} °

—0.5 A

e ® ® LI 4 '00’

x

0.0 0.5 1.0 1.5 2.0 2.5

[9]: plot_natural(vertices, endconditions='closed', alpha=0.5)
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[1]:

[2]:

[3]:

[4]:

[5]:

[6]:

[7]:

1.50 -
1.25 -
1.00 -
0.75 - K
0.50 - .
0.25 . ® .
0.00 -

—0.25 1

—0.50 A1

RN EEE ..1!

The following section was generated from doc/euclidean/natural-uniform.ipynb

Uniform Natural Splines

non-uniform (page 35)

import sympy as sp
sp.init_printing(order='rev-lex')

utility.py

from utility import NamedExpression

t = sp.symbols('t')

a3, a4, b3, b4, c3, c4, d3, d4 = sp.symbols('a:dbm3:5")
b_monomial = sp.Matrix([t**3, t**2, t, 1]).T

p3 =
pd =
display(p3, p4)
pPs = d3t3 + C31—L2 + b3t + a3
Ps= d4i’3 + C4i’2 + byt + ay
pd3 = p3.diff(t)

pd4 = pd.diff(t)
display(pd3, pd4)

d
Eps = 3d3t2 + 2¢3t + by
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doc/euclidean/natural-properties.ipynb ends here.

NamedExpression('pbm3', d3 * t**3 + c3 * t**2 + b3 * t + a3)
NamedExpression('pbmd', d4 * t**3 + c4 * t*x2 + bd *x t + ad)


https://github.com/AudioSceneDescriptionFormat/splines/blob/8007a37/doc/euclidean/natural-properties.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/8007a37/doc/euclidean/natural-uniform.ipynb
utility.py

d
%FM = 3d4t2 4+ 2c4t + by

[8]: equations = [
p3.evaluated_at(t, 0).with_name('xbm3'),
p3.evaluated_at(t, 1).with_name('xbmd'),
p4.evaluated_at(t, 0).with_name('xbmd'),
p4.evaluated_at(t, 1).with_name('xbm5'),
pd3.evaluated_at(t, 0).with_name('xbmdot3'),
pd3.evaluated_at(t, 1).with_name('xbmdot4'),
pd4.evaluated_at(t, 0).with_name('xbmdot4d'),
pd4.evaluated_at(t, 1).with_name('xbmdot5'),

iisplay(*equations)
X3 = az

x4 =d3+c3+ b3+ aj
X4 = Ay

xs =dy+cy+by+ay
X3 = b3

X4 = 3ds +2c3+ b;

X4 = by

X5 =3dg +2c4 + by

[9]: coefficients = sp.solve(equations, [a3, a4, b3, b4, c3, c4, d3, d4])
for c, e in coefficients.items():
display (NamedExpression(c, e))

asz = X3

b3 = i3

c3 = —Xxy4 — 2x3 + 3x4 — 3x3
ds = x4 + &3 — 2x4 + 2x3
ag = X4

by = iy

cy = —Xx5 — 2%4 + 3x5 — 3xy

dy = x5+ &4 — 2x5 + 2x4

NB: these are the same constants as in My (see Uniform Hermite Splines (page 15))!

[10]: pdd3 = pd3.diff(t)
pdd4 = pd4.diff(t)
display(pdd3, pdd4)

2
Ep?) = 6d3t +2C3
42
ﬁp‘l = 6d4t + 2C4

[11]: sp.Eq(pdd3.expr.subs(t, 1), pdd4.expr.subs(t, 0))
[11]: 6d3+2c3 = 2¢4

[12]: _.subs(coefficients).simplify()
[12]: 3x3 = —x5 — 4x4 — X3 + 3x5
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generalize by setting index 4 — i

X1+ 4%+ i = 3(xi01 — xi1)

1 4 1 <o 0] .
[ %o 3(x2 — x0)
1 4 1 : X1 3(x3 —x1)
: IN-2 3(x¥N-—2 —XN-4)
: 1 4 1 . 3 — xna)
0 - 1 4 1) XN-1 XN-1—XN-3

N columns, N — 2 rows

End Conditions

add first and last row
end conditions can be mixed, e.g. “clamped” at the beginning and “natural” at the end.

The Python class splines.Natural (page 137) uses “natural” end conditions by default.

Natural

notebook about “natural” end conditions (page 104)
Get the uniform case by setting A; = 1.
259 + %1 = 3(x1 — x9)

AN +2&N-1 = 3(xn-1 — AN-2)

) 3(X1 — xo)
1 4 1 : X0 3(3(2 —xq)
1 4 1 X1 3(X3 — x1)
1 4 1 N2 3(¥N-2 — xN_4)
1 4 1 xN—l :::;ExN—l - xN*3)
0 1 2 [3(¥Nn-1—xN-2)

Clamped

clamped (end tangents are given)

Xp = Dbegin

AN_1= Dend

1 0 - :
. Dbegin
1 4 1 : X0 3(3(,'2 — x())
1 4 1 5(1 3(X3 — x1)
1 4 1 XIN-2 3(¥N-2 — xN_4)
: 1 a4 1| N 3(xN-1—2xN_3)
0o ... 1 L Dbegin
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Closed

4 1 - 001
[ 3(x1 —an-1) ]
pad 0 0 o 3(x2 — x0)
1 4 1 : X1 3(X3 — x1)
: 1 4 1 N2 3(xN—2 — ¥N—_4)
0 0 1 4 1] biva 3(xn—1—xN_3)
10 - 1 4 L 3(x0 —xN—2)

Solving the System of Equations

tridiagonal matrix algorithm

https:/ /en.wikipedia.org/wiki/Tridiagonal _matrix_algorithm

https:/ /www.cfd-online.com /Wiki/ Tridiagonal_matrix_algorithm®

https:/ / gist.github.com/cbellei/8ab3ab8551b8dfc8bo81c518ccdgadag

https:/ / gist.github.com/TheoChristiaanse/d168bye57dd30342a81aa1dc4eb3e469

........................................................................................... doc/euclidean/natural-uniform.ipynb ends here.

The following section was generated from doc/euclidean/natural-non-uniform.IPYOD ........oouuiiutitii e

Non-Uniform Natural Splines

uniform (page 32)

[1]: import sympy as sp
sp.init_printing(order='rev-lex')

utility.py

[2]: from utility import NamedExpression

[3]: t = sp.symbols('t')

[4]: t3, t4, t5 = sp.symbols('t3:6")

[5]: b_monomial
b_monomial

Bl [ 2t 1]

sp.Matrix([t**3, t**2, t, 1]).T

[6]: coefficients3 = sp.symbols('a:dbm3')[::-1]
coefficients4d = sp.symbols('a:dbmé4') [::-1]

[7]: b_monomial.dot(coefficients3)

[71: d3f3 + C3f2 + b3t + a3

8 https:/ /www.cfd-online.com/Wiki/ Tridiagonal_matrix_algorithm_-_TDMA_(Thomas_algorithm)
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https://github.com/AudioSceneDescriptionFormat/splines/blob/8007a37/doc/euclidean/natural-uniform.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/8007a37/doc/euclidean/natural-non-uniform.ipynb
utility.py

[8]:

[9]:

[10]:

[11]:

[12]:

p3 = NamedExpression(

'pbm3',

b_monomial.dot (coefficients3) .subs(t,
p4 = NamedExpression(

'pbm4 ',

b_monomial.dot (coefficients4) .subs(t,
display(p3, p4)

ds (—t5+1)° c3(—tz3+1)? by(—t3+t
py = 3(33) 3(32)+3(3 )+u3
(ty —t3) (ty — t3) ts—t3
dy (—ts+1)° ca(—ts+1)? by(—tg+t
Py = 4 (—ty J 4 (—ts 2 L bty )+u4
(t5—t4) (t5—t4) t5 — Iy
pd3 = p3.diff(t)
pdd = p4.diff(t)
display(pd3, pd4)
dp C 3ds(—t3+ 1) ez (—2t5 +21) b3
Lp, =
dt (tyg — f3)3 (ty — ) ty —1t3
dp C Bdy(—ty 1) ey (<2t +21) by
Lp, =
dt (ts — ts)° (ts — tg)? ts — 14

equations = [
p3.evaluated_at(t, t3)
p3.evaluated_at(t, t4)
p4.evaluated_at(t, t4).with_name('xbmd'),
p4.evaluated_at(t, t5).with_name('xbm5'),
pd3.evaluated_at(t, t3).with_name('xbmdot3'),
pd3.evaluated_at(t, t4).with_name('xbmdotd'),
pd4.evaluated_at(t, t4).with_name('xbmdotd'),
pd4.evaluated_at(t, t5).with_name('xbmdot5'),

.with_name('xbm3'),
.with_name('xbmd'),

to simplify the display, but we keep calculating with ¢;

deltas = {
t3: 0,
t4: sp.Symbol('Delta3'),
t5: sp.Symbol('Delta3') + sp.Symbol('Deltad'),

for e in equations:
display(e.subs(deltas))

X3 = a3
x4 =d3+c3+ b3+ aj
X4 = a4
xs =dy+cy+by+ay
X3 = ké
Az
X4:3d3 203 ﬁ
As A3 A
Xq = ké
Ay
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(t - t3)/(t4 - t3)))

(t - t4)/(t5 - t4)))



[13]:

[14] :

[15]:

[16]:

[16]:

[17]:
[17] :

. 3d4 2C4 b4
X5 —

[ Y

coefficients = sp.solve(equations, coefficients3 + coefficients4)

for c, e in coefficients.items():
display(NamedExpression(c, e.subs(deltas)))

asz = X3

by = Azxs

c3 = 3x4 — 3x3 — Aziky — 2A3%3

dy = —2x4 + 2x3 + Azxy + Azis

as = X4

by = x4 (Ag + A3) — Asiey

¢y = —x5 (Ag + Az) — 24 (Mg + A3) + 3x5 — 3x4 + Azis + 2A3%y
dy = xs5 (A4 + A3) + x4 (A4 + Ag) — 2x5 + 2x4 — Azxs — Aziy
pdd3 = pd3.diff(t)

pdd4 = pd4.diff(t)
display(pdd3, pdd4)

d>  3dy (=2t +21) L2
aphs (ts—t3)° (ts — t3)°
a2 _ B3dy (=2t +21) N 2¢4
arbs (ts — ts)° (ts — t)*

sp.Eq(pdd3.expr.subs(t, t4), pdd4.expr.subs(t, t4))
3d; (2t4 — 2t3) n 2c3 . 2¢y
(ts — t3)° (ta—t)  (ts—ta)”

_.subs(coefficients) .subs(deltas) .simplify()

2 (—3x4 + 3x3 + 2A3%4 + Azis) 2 (3x5 — 3xg — Agxs — 2A4%4)

2 2
AS A4

generalize by substituting index 4 — i

3(x; —xi_1)

3(xip1 — x;)

L (2 2) st e
IR V.VEFR.VY A Vs Ai_q?
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End Conditions

The Python class splines.Natural (page 137) uses “natural” end conditions by default.

Natural

notebook about “natural” end conditions (page 104)

2Ap%xp + Apx1 = 3(x1 — x0)
AN_2%N—2 +2AN_2%N—1 = 3(xN_1 — XN_2)

Other End Conditions

See notebook about uniform “natural” splines (page 34)
...................................................................................... doc/euclidean/natural-non-uniform.ipynb ends here.

1.5 Bézier/Bernstein Splines

The following section was generated from doc/euclidean/bezier-properties.ipynb ............coiiiiiiiiiiiiiiiiiiiii i,

Properties of Bézier/Bernstein Splines

[1]: import matplotlib.pyplot as plt
import numpy as np

[2]: import splines
[3]1: # TODO: example plot of cubic Bézier with "handles"

[4]: control_points = [
(o, 0, 1, H1,
[, 4, 2, 2, 4, 41,
[, 4, (6, 4, 6, 2), (6, 2)1,
(6, 23, (6, 00, 4, 00, (5, 1), (3, DI,

[5]: s = splines.Bernstein(control_points)

[6]: s.grid
[6]: [0, 1, 2, 3, 4]

[7]: times = np.linspace(s.grid[0], s.grid[-1], 100)

[8]: fig, ax = plt.subplots()
for segment in control_points:
Xy = np.transpose(segment)
ax.plot(*¥xy, '--', linewidth=1)
ax.scatter (*xy, color='grey')
ax.plot(*s.evaluate(times) . T, 'k.')
ax.axis('equal');
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[8]: (-0.30000000000000004, 6.3, -0.2, 4.2)
4.0 8 v - -
¢ * ° °e /
° ] ® /
3-5 N .’ .. ° hg .. /I
.. ° ° /
.* ° °® ¢ .. //
3.0 A ¢ XTI LA o/
. o
2.5 ; &
. ¢ / .
3 .
/
2.0 1 ‘ © e
: :
1.5 - by ,:
; 3
1
_ / — ) g = = = = ———— e
1.0 ‘ L AP Wd o |
, 0. ’ ) 1
[ LY [ ] 1
0.5 1 ¢ 7 Geeee® :
! :
0.0{ ® @ B
T T T
0 1 2 3 4 5 6
[9]: # TODO: example with non-uniform time
......................................................................................... doc/euclidean/bezier-properties.ipynb ends here.
The following section was generated from doc/euclidean/bezier-de-casteljau.iPYnb ..........iiiiiiiiiiiiiiiiiiii i,

De Casteljau’s Algorithm

See also https://pomax.github.io/bezierinfo/.
There are several ways to get to Bézier curves, one was already shown in the notebook about Hermite

curves (page 21) (but only for cubic curves).
TODO: first explain control polylines and then link to Hermite splines?

Another one is the so-called De Casteljau’s algorithm. (TODO: link to De Casteljau)
One nice aspect of this is that the algorithm can be used for arbitrary polynomial degrees.

A Bézier spline is defined by a so-called control polyline (or control polygon), which comprises a sequence
of control points. Some of those control points are part of the final spline curve, others lie outside of
it. The degree of a spline segment determines how many “off-curve” control points are between two

“on-curve” control points.
For example, in a cubic (degree = 3) Bézier spline there are two (= degree - 1) “off-curve” control

points.
Two equally valid viewpoints for what a Bézier spline is:
* A sequence of curve segments, each defined by degree + 1 control points. The first control point
of a segment is the same as the last control point of the previous one.
* A sequence of control points that can be used to shape the resulting curve. Every degree’th

control point lies on the curve and the others define the shape of the curve segments.
cubic Bézier splines (show screenshot from drawing program, e.g.

TODO: most well-known:

Inkscape). The two “off-curve” control points are shown as “handles”.
TODO: typical set of constraints on continuity in drawing programs: Co, C1, G1
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Preparations

Before we continue, here are are few preparations for the following calculations:

[1]: Y%config InlineBackend.print_figure kwargs = {'bbox_inches': None}
import matplotlib.pyplot as plt
import numpy as np
import sympy as sp
sp.init_printing()

Matplotlib is building the font cache; this may take a moment.

We import stuff from the file utility.py:

[2]: from utility import NamedExpression, NamedMatrix

helper.py

[3]: from helper import plot_basis

Let’s prepare a few symbols for later use:

[4]: t, x0, x1, x2, x3, x4 = sp.symbols('t, xbm:5')

. and a helper function for plotting:

[5]: def plot_curve(func, points, dots=30, ax=None):
if ax is None:
ax = plt.gca(
times = np.linspace(0, 1, dots)
ax.plot (*func(points, times).T, '.')
ax.scatter (*np.asarray(points) .T, marker='x', c='black')
ax.set_title(func. name  + ' Bézier curve')

ax.axis('equal')
We also need to prepare for the animations we will see below. This is using code from the file casteljau.
py:

[6]: from casteljau import create_animation
from IPython.display import display, HTML

def show_casteljau_animation(points, frames=30, interval=200):
ani = create_animation(points, frames=frames, interval=interval)

display ({
"text/html': ani.to_jshtml(default_mode='reflect'),
'text/plain': 'Animations can only be shown in HTML output, sorry!',

}, raw=True)
plt.close() # avoid spurious figure display
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utility.py
helper.py
casteljau.py
casteljau.py

[7]:

[8]:

[8]:

[9]:

[9]:

[10]:

Degree 1, a.k.a. linear

But let’s start with the trivial case: A Bézier spline of degree 1 is just a piecewise linear curve connect-
ing all the control points. There are no “off-curve” control points that could bend the curve segments.

Assume that we have two control points, xy and x; ...
... linear equation ...:
Po1(t) = xo + t(x1 — x0) (1)
. in other words ... this is called affine combination, but we don’t really have to worry about it ...
Poq(t) = (1 —t)xo + txy (2)
. with t € [0,1] (which is called uniform)
TODO: show change of variables for non-uniform curve?

Since we will be needing quite a bunch of those affine combinations, let’s create a helper function:

def affine combination(one, two):
return (1 - t) * one + t * two

Now we can define the equation in SymPy:

p01 = NamedExpression('pbm 0,1', affine_combination(x0, x1))
pO1

Po1 = tx1 +x0 (1 1)

bl = [pO01l.expr.expand().coeff (x.name).factor() for x in (x0, x1)]
bl

M-t f

Doesn’t look like much, but those are the Bernstein bases for degree 1 (https://en.wikipedia.org/
wiki/Bernstein_polynomial).

It doesn’t get much more interesting if we plot them:

plot_basis(*bl, labels=bl)
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[11]:

[11]:

[12]:

[12]:

[13]:
[13]:

[14]:
[14] :

weight

If you want to convert this to coefficients for the monomial basis [t, 1] instead of the Bernstein basis
functions, you can use this matrix:

M _B1 = NamedMatrix(
r'{M_\text{B} {(1)3}}',
sp.Matrix([[c.coeff(x) for x in (x0, x1)]
for ¢ in pOl.expr.as_poly(t).all_coeffs()]))

M_B1
mn _|-1 1
uy =7

Applying this matrix leads to the coefficients of the linear equation mentioned in the beginning of this
section (pg 4 (t) = t(x1 — x0) + xo):

sp.MatMul (M_B1.expr, sp.Matrix([x0, x1]))
-1 1 X0
1 0 X1

_.doit ()

—x0 + X1
X0

If you ever need that, here’s the inverse:

M B1.I
m-1 0 1
Mg _{1 1

Anywho, let’s calculate points on the curve by using the Bernstein basis functions:
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[15]:

[16]:

[177:

[18]:

[19]:
[19]:

[20]:

def linear(points, times):
"""Evaluate linear Bézier curve (given by two points) at given times.

return np.column_stack(sp.lambdify(t, bl) (times)) @ points

points = [
(0, 0),
(1, 0.5),
]

plot_curve(linear, points)

linear Bézier curve

i

0.6 A

0.5 1

0.4 1

0.3 A o’

0.2 A o *

0.1- .

004 X

—0.1 T T T T

0.0 0.2 0.4 0.6

show_casteljau_animation(points)

Animations can only be shown in HTML output, sorry!

I know, not very exciting. But it gets better!

Degree 2, a.k.a. quadratic

Consider three control points, xp, x; and x; ...

We use the affine combinations of the first two points from above ...

pO1
Po1 = tx1+x0 (1 — 1)

. and we do the same thing for the second and third point:

pl2 = NamedExpression('pbm_1,2', affine_combination(xl, x2))
pl2
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[20]:

[21]:

[21]:

[22]:

[22] :

[23]:

[24]:

[24] :

[25]:

[25]:

p1p=txa+x1 (11t

Finally, we make another affine combination of those two results:

p02 = NamedExpression('pbm_0,2', affine_combination(pO1l.expr, pl2.expr))
p02

Poor = F(lep+x (1—1)+(1—¢) (bxg +x0 (1 — 1))
Bernstein basis functions:

b2 = [p02.expr.expand() .coeff (x.name).factor() for x in (x0, x1, x2)]
b2

[(t —1)2, —2t(t—1), tz}

plot_basis(*b2, labels=b2)

weight

M_B2 = NamedMatrix(
r'{M_\text{B} {(2)}}',
sp.Matrix([[c.coeff(x) for x in (x0, x1, x2)]
for ¢ in p02.expr.as_poly(t).all_coeffs()]))

M_B2
1 21
MP =12 2 o0
1 0 0
M B2.1
. o0 1
MP =10 11
111
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[26]:

[27]:

[28]:

[29]:

[30]:

[31]:
[31]:

[32]:
[32]:

def quadratic(points, times):
"""Evaluate quadratic Bézier curve (given by three points) at given times."""
return np.column_stack(sp.lambdify(t, b2)(times)) @ points

points = [
0, 0),
(0.2, 0.5),
1, -0.3),
]

plot_curve(quadratic, points)

quadratic Bézier curve
0.5 - X

0.4 1
0.3 A
0.2
0.1 o o

0.0 1 x ¢

—0.3 A X

0.0 0.2 0.4 0.6 0.8 1.0

show_casteljau_animation(points)

Animations can only be shown in HTML output, sorry!

For some more insight, let’s look at the first derivative of the curve (i.e. the tangent vector):

v02 = p02.diff (t)

. at the beginning and the end of the curve:

v02.evaluated _at(t, 0)

d

EPO,Z = —2x0 + 2x71

t=0

v02.evaluated _at(t, 1)

d

EEpOQ = —2x1 + 2x7

t=1

This shows that the tangent vector at the beginning and end of the curve is parallel to the line from
xo to x1 and from x; to x,, respectively. The length of the tangent vectors is twice the length of those
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lines.

You might have already seen that coming, but it turns out that the last line in de Casteljau’s algorithm
(P12(t) — po1(t) in our case) is exactly half of the tangent vector (at any given ¢ € [0,1]).

[33]: (v02.expr - 2 * (pl2.expr - pOl.expr)).simplify()
(33]: 0

In case you are wondering, the factor 2 comes from the degree 2 of our quadratic curve.

Degree 3, a.k.a. cubic

Consider four control points, xg, x1, x2 and x3 ...

By now, the pattern should be clear: We take the result from the first three points from above and
affine-combine it with the result for the three points x1, x; and x3.

Combination of x, and x3:

[34]: p23 = NamedExpression('pbm_2,3', affine_combination(x2, x3))
p23

[34]: prs = txg +xp (1 —1#)
Combination of x1, x; and x3:

[35]: pl13 = NamedExpression('pbm_1,3', affine_combination(pl2.expr, p23.expr))
p13

[35]: p13= ez +x(1—1)+(1—¢) (bxg + 21 (1 — 1))
Combination of xj, x1, x, and x3:

[36]: p03 = NamedExpression('pbm_0,3', affine_combination(p02.expr, pl3.expr))
p03

(36]: pos=t(t(txz+x2(1—1))+(1—#)(txa+x1 (1 —1))) +
(I=8) (o +x(1—=18)+(1—#) (bxg +x0 (1 —1)))
Bernstein bases:

[37]: b3 = [p03.expr.expand().coeff (x.name).factor() for x in (x0, x1, %2, x3)]
b3

[37]: [_ (t—1)3%, 3t (t—1)%, =32 (t—1), tﬂ

TODO: show that those are the same Bernstein bases as in the notebook about Hermite splines

[38]: plot_basis(*b3, labels=b3)
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[39]:

[39]:

[40] :
[40] :

[41]:

[42] :

[43]:

weight

M_B3 = NamedMatrix(
r'{M \text{B} {(3)}}',
sp.Matrix([[c.coeff(x) for x in (x0, x1, x2, x3)]
for ¢ in p03.expr.as_poly(t).all_coeffs()]))

-1 3
3 —6
-3 3
1 0
00
oo
=101
11

— WINWI— O

oo o

[E S G

def cubic(points, times):

"""Evaluate cubic Bézier curve (given by four points) at given times."""
return np.column_stack(sp.lambdify(t, b3) (times)) @ points

points
(0,
(0.
(0.
1,
]

= [
0.3),
2, 0.5),
1, 0),
0.2),

plot_curve(cubic, points)
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[44] :

[45] :

[46] :

[46] :

[47]:
[47]:

cubic Bézier curve

0.6 A

0.5 A X

0.4 -

034 x .,

0.2 A ®e e

0.1 1

0.0 A X

_0'1 - T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

show_casteljau_animation(points)

Animations can only be shown in HTML output, sorry!

As before, let’s look at the derivative (i.e. the tangent vector) of the curve:

v03 = p03.diff (t)

. at the beginning and the end of the curve:

v03.evaluated _at(t, 0)

d

EPO,S = —3x0 + 3x1

t=0

v03.evaluated _at(t, 1)

d

21P03 = —3xp +3x3

t=1

This shows that the tangent vector at the beginning and end of the curve is parallel to the line from
xp to x1 and from x; to x3, respectively. The length of the tangent vectors is three times the length of
those lines.

We can now see that the last line in de Casteljau’s algorithm (p; () — py,(#) in this case) is exactly a
third of the tangent vector (at any given t € [0, 1]):

: (v03.expr - 3 * (pl3.expr - p02.expr)).simplify()

0

Again, the factor 3 comes from the degree 3 of our curve.

We now know the tangent vectors at the beginning and the end of the curve, and obviously we know
the values of the curve at the beginning and the end:
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[49]:

[49]:

[50]:
[50]:

[51]:

[51]:

[62]:

[62]:

[63]:

[63]:

p03.evaluated_at(t, 0)

Pos|,_,

p03.evaluated_at(t, 1)

= X
t=1 3

Poj3

With these four pieces of information, we can find a transformation from the four Bézier control points
to the two control points and two tangent vectors of Hermite splines:

M _BtoH = NamedMatrix(
r'{M_\text{B$\to$H}}',
sp.Matrix([[expr.coeff(cv) for cv in [x0, x1, x2, x3]]
for expr in [

x0,
x3,
v03.evaluated_at(t, 0).expr,
v03.evaluated_at(t, 1).expr]ll))

M_BtoH
1 0 0 O
e
0O 0 -3 3

And we can simply invert this if we want to go in the other direction, from Hermite to Bézier:

M_BtoH.I.pull out(sp.S.One / 3)

300 0
S, 11301 0
1_1

Me-n " =310 3 0 —1

030 0

Of course, those are the same matrices as shown in the nofebook about uniform cubic Hermite splines
(page 15).

TODO: show tangent vectors for non-uniform case

Degree 4, a.k.a. quartic

Consider five control points, xg, x1, X2, x3 and x4 ...

More combinations!

p34 = NamedExpression('pbm_3,4', affine_combination(x3, x4))

p24 = NamedExpression('pbm_2,4', affine_combination(p23.expr, p34.expr))

pl4 = NamedExpression('pbm_1,4', affine_combination(pl3.expr, p24.expr))

p04 = NamedExpression('pbm 0,4', affine_combination(p03.expr, pld.expr))

pO4

Pos =

E(t(t(txg+a3(1—1)) +(1—t) (txz+x2 (1 — 1))+ (1 —t) (t(bxz +x2 (1 — 1)) + (1 —#) (txa + 21 (1 —1)))) +
(I—t) (t(t(txs+xp (1—1) + (1 =) (Bxa+ 21 (1= £))) + (1 = 1) (t (txz + 21 (1= 1)) + (1 = £) (tx1 +x0 (1 - £))))

Kinda long, but anyway;, let’s try to extract the Bernstein bases:
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[54]: b4 = [p04.expr.expand().coeff (x.name).factor() for x in (x0, x1, x2, x3, x4)]

b4

[54] : {(t—— 1)4, 4t (t— 1)3, 61 (t — 1)2/ —43 (t—1), t4]

[55]: plot_basis(xb4, labels=b4)

[56]:

[56] :

[57]:
[67]:

[68]:

1 — (t—1)4
— —4t(t—-1)3
— 6t2(t—1)2
— —4t3(t-1)
t4
<
(@)]
D
2
0
0 1
t

M_B4 = NamedMatrix(
{M_BH{@},
sp.Matrix([[c.coeff(x) for x in (x0, x1, x2, x3, x4)]
for ¢ in pO4.expr.as_poly(t).all_coeffs()]))

M_B4
1 -4 6 —4 1
4 12 12 4 0
MP=|6 -12 6 0 0
4 4 0 0 0
1 0 0 0 0
M B4.I
0000 1
000 11
—1 4
M1(34):00%%1
0 7 3 11
11111

def quartic(points, times):
"""Evaluate quartic Bézier curve (given by five points) at given times."""
return np.column_stack(sp.lambdify(t, b4) (times)) @ points
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[59]:

[60]:

[61]:

[62]:

[63]:
[63]:

[64]:
[64] :

points = [
0, 0),
(0.5, 0),
0.7, 1),
(1, 1.5),
(-1, 1),
]

plot_curve(quartic, points)

quartic Bézier curve
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show_casteljau_animation(points)

Animations can only be shown in HTML output, sorry!

For completeness’ sake, let’s look at the derivative (i.e. the tangent vector) of the curve:

v04 = p04.diff (t)

. at the beginning and the end of the curve:

v04.evaluated_at(t, 0)

d
7;Pos - = —4xo +4x;

v04.evaluated at(t, 1)
d

%pOA i = —4x3+4xy

By now it shouldn’t be surprising that the tangent vector at the beginning and end of the curve is
parallel to the line from xp to x; and from x3 to x4, respectively. The length of the tangent vectors is

four times the length of those lines.
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[65]:

[65]:

[66]:

The last line in de Casteljau’s algorithm (p; 4(t) — p(3(#) in this case) is exactly a fourth of the tangent
vector (at any given ¢ € [0,1]):

(vO4.expr - 4 * (pld.expr - p03.expr)).simplify()
0

Again, the factor 4 comes from the degree 4 of our curve.

Arbitrary Degree

We could go on doing this for higher and higher degrees, but this would get more and more annoying.

Luckily, there is a closed formula available to calculate Bernstein polynomials for an arbitrary degree

n!
n

bin(x) = <,>xi(1—x)"_i, i=0,...,n (3)

i
with the binomial coefficient ('}) = l,(nnill),

TODO: link to proof?

TODO: show Bernstein polynomials for “quintic” etc.?

show_casteljau_animation([

0, 0,
(-1, 1),
(0.5, 2),
(1, 2.5),
2, 2),

(2, 1.5),
(0.5, 0.5),
(1, -0.5),

D

Animations can only be shown in HTML output, sorry!

...................................................................................... doc/euclidean/bezier-de-casteljau.ipynb ends here.

1.6 Catmull-Rom Splines

What is nowadays known as Catmull-Rom spline (named after Edwin Catmull® and Raphael Rom™)
is a specific member of a whole family of splines introduced in [CR74]. That paper only describes
uniform splines, but their definition can be straightforwardly extended to the non-uniform case.

Contrary to popular belief, Overhauser splines (as presented in [Ove68]) are not the same!

A Python implementation of Catmull-Rom splines is available in the splines.CatmullRom (page 136)
class.

The following section was generated from doc/euclidean/catmull-rom-properties.ipynb ..............ooiiiiiiiiiiiiii i,

Properties of Catmull-Rom Splines

[CRy74] presents a whole class of splines with a whole range of properties. Here we only consider one
member of this class which is a cubic polynomial interpolating spline with C! continuity and local
support. Nowadays, this specific case is typically simply referred to as Catmull-Rom spline.

9 https:/ /en.wikipedia.org/wiki/Edwin_Catmull
' https:/ /en.wikipedia.org/wiki/Raphael_Rom
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[1]:

[2]:

[3]:

[47:

[5]:

[6]:

This type of splines is very popular because they are very easy to use. Only a sequence of control
points has to be specified, the tangents are calculated automatically from the given points. Using
those tangents, the spline can be implemented using cubic Hermite splines (page 12). Alternatively,
spline values can be directly calculated with the Barry—Goldman algorithm (page 74).

To calculate the spline values between two control points, the preceding and the following control
points are needed as well. The tangent vector at any given control point can be calculated from
this control point, its predecessor and its successor. Since Catmull-Rom splines are C! continuous,
incoming and outgoing tangent vectors are equal.

The following examples use the Python class splines.CatmullRom (page 136) to create both uniform and
non-uniform splines. Only closed splines are shown, other end conditions (page 104) can also be used,
but they are not specific to this type of spline.

import matplotlib.pyplot as plt
import numpy as np

Apart from the splines (page 134) module ...

import splines

. we also import a few helper functions from helper.py:

from helper import plot_spline_2d, plot_tangent_2d

Let’s choose a few points for an example:

pointsl = [
(0.2, -0.5),
(0, 2.3),
1, 0,
(4, 1.3),
(3.8, -0.2),
(2.5, 0.1),

Without specifying any time values, we get a uniform spline:

sl = splines.CatmullRom(pointsl, endconditions='closed')

fig, ax = plt.subplots()
plot_spline_2d(sl, ax=ax)
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Tangent Vectors

In the uniform case, the tangent vectors at any given control point are parallel to the line connecting
the preceding point and the following point. The tangent vector has the same orientation as that line
but only half its length. In other (more mathematical) words:

. Xip] — Xj_
X = i+1 5 i—1
This is illustrated for two control points in the following plot:

[7]: for idx, color imn zip([2, 5], ['purple', 'hotpink']):

plot_tangent_2d(
sl.evaluate(sl.grid[idx], 1),
sl.evaluate(sl.grid[idx]), color=color, ax=ax)

ax.plot(
*sl.evaluate([sl.grid[idx - 1], sl.grid[idx + 11]1).T,
'——', color=color, linewidth=2)

fig
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We can see here that each tangent vector is parallel to and has half the length of the line connecting
the preceding and the following vertex, just as promised.

However, this will not be true anymore if we are using non-uniform time instances:

[8]: times2 = 0, 1, 2.2, 3, 4, 4.5, 6
[9]: s2 = splines.CatmullRom(pointsl, grid=times2, endconditions='closed')

[10]: plot_spline_2d(s2, ax=ax)
for idx, color in zip([2, 5], ['green', 'crimson']):
plot_tangent_2d(
s2.evaluate(s2.grid[idx], 1),
s2.evaluate(s2.grid[idx]), color=color, ax=ax)
fig
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In the non-uniform case, the equation for the tangent vector gets quite a bit more complicated:

_ (i — 1) (e —x1) + (= ti1)* (i1 — x7)
(bisr = £) (h = tia) (b1 — £i1)

1

Equivalently, this can be written as:

(tipr —t) (¥ —xi-1) (ti —tic) (xig1 — xi)
(ti—ti)(tigr —tic1) - (tigr — £)(tin — tio1)

The derivation of this equation is shown in a separate notebook (page 72).

i =

Some sources use a simpler equation which is (arguably) not correct (except in the uniform case):

oL (xi—xiq | X — xi)
X = = +
2 ( ti—tio1 tig—t
See the notebook about “finite difference” splines (page 84).

There are even sources (e.g. Wikipedia'') which show yet a simpler (but even less correct, except in
the uniform case) equation:

. Xiy1 — Xi—1
Mk
i+1 — ti—1

Farin (2001) calls this FMILL, whatever that’s supposed to mean and falsely calls it Catmull-Rom!

Cusps and Self-Intersections

Uniform parametrization typically works very well if the (Euclidean) distances between consecutive
vertices are all similar. However, if the distances are very different, the shape of the spline often turns
out to be unexpected. Most notably, in extreme cases there might be even cusps or self-intersections

within a spline segment.

[11]: def plot_catmull_rom(*args, *+kwargs):

plot_spline_2d(splines.CatmullRom(*args, endconditions='closed', **kwargs))

' https:/ /en.wikipedia.org/wiki/Cubic_Hermite_spline#Catmull%E2%80%93Rom_spline
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[12]: points3 = [

0, 0),

(0, 0.5),
(1.5, 1.5),
(1.6, 1.5),
(3, 0.2),
(3, 0),

[13]: plot_catmull_rom(points3)

2.0 1
1.5 .,&..
1.0 et ) e .
0.5 - .,x'.. '..
¢
0.0 - *Xe e 6 6 e e ° o ‘¢ e @ e '@ 'x::-

We can try to compensate this by manually selecting some non-uniform time instances:

[14]: times3 = 0, 0.2, 0.9, 1, 3, 3.3, 4.5

[15]: plot_catmull rom(points3, times3)
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[16]:

[16]:

[177:

[171:

[18]:

1.50 -
1.25 . e
1.00 - .

0.75 ¢ %
0.50 -
0.25 -
0.001 X

—0.25 1 R o °

—0.50 A

Time values can be chosen by trial and error, but there are also ways to choose the time values auto-
matically, as shown in the following sections.

Chordal Parameterization

One way to go about this is to measure the (Euclidean) distances between consecutive vertices (i.e. the
“chordal lengths”) and simply use those distances as time intervals:

distances = np.linalg.norm(np.diff (points3 + points3[:1], axis=0), axis=1)
distances

array([0.5 ,
3. D

1.80277564, 0.1 , 1.91049732, 0.2 s

times4 = np.concatenate([[0], np.cumsum(distances)])
times4

array ([O. , 0.5 , 2.30277564, 2.40277564, 4.31327296,
4.51327296, 7.51327296])

plot_catmull_rom(points3, times4)
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This makes the speed along the spline nearly constant, but the distance between the curve and its
longer chords can become quite huge.

Centripetal Parameterization

As a variation of the previous method, the square roots of the chordal lengths can be used to define
the time intervals.

timesb5 = np.concatenate([[0], np.cumsum(np.sqrt(distances))])
timesb

array([0. , 0.70710678, 2.04978159, 2.36600935, 3.74821676,
4.19543036, 5.92748116])

[20]: plot_catmull rom(points3, timesb)
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[21]:

[22] :

[22]:
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The curve takes its course much closer to the chords, but its speed is obviously far from constant.

Centripetal parameterization has the very nice property that it guarantees no cusps and no self-
intersections, as shown by [YSK11]. The curve is also guaranteed to never “move away” from the

successive vertex:
When centripetal parameterization is used with Catmull-Rom splines to define a path
curve, the direction of motion for the object following this path will always be towards the
next key-frame position.

—[YSK11], Section 7.2: “Path Curves”

Parameterized Parameterization

It turns out that the previous two parameterization schemes are just two special cases of a more general
scheme for obtaining time intervals between control points:

ol =t+ |2 —x]% with0 <a <1
In the Python class splines.CatmullRom (page 136), the parameter alpha can be specified.

def plot_alpha(alpha, label):
s = splines.CatmullRom(points3, alpha=alpha, endconditions='closed')

plot_spline_2d(s, label=label)

plot_alpha(0, '
plot_alpha(0.5,
plot_alpha(0.75, ' = 0.75'")
plot_alpha(l, ' = 1 (chordal)"')
plt.legend(loc:'center', numpoints=3) ;

0 (uniform)")
= 0.5 (centripetal)')

<matplotlib.legend.Legend at 0x7fcdl12d26be0>
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As can be seen here (and as [YSK11] shows to be generally true), the uniform curve is farthest away
from short chords and closest to long chords. The chordal curve behaves contrarily: closest to short

chords and awkwardly far from long chords. The centrip
long chords and closer to the chordal curve for short chor

Any value between 0 and 1 can be chosen for a, but « =

etal curve is closer to the uniform curve for
ds, providing a very good compromise.

% (i.e. centripetal parameterization) stands

out because it is the only one of them that guarantees no cusps and self-intersections:

In this paper we prove that, for cubic Catmull-Rom curves, centripetal parameterization is
the only parameterization in this family that guarantees that the curves do not form cusps
or self-intersections within curve segments.

—[YSK11], abstract

[...] we mathematically prove that centripetal parameterization of Catmull-Rom curves
guarantees that the curve segments cannot form cusps or local self-intersections, while
such undesired features can be formed with all other possible parameterizations within
this class.

—[YSK11], Section 1: “Introduction”

Cusps and self-intersections are very common with Catmull-Rom curves for most param-
eterization choices. In fact, as we will show here, the only parameterization choice that
guarantees no cusps and self-intersections within curve segments is centripetal parameter-
ization.

—[YSK11], Section 3: “Cusps and Self-Intersections”

The following section was generated from doc/euclidean/catmull-rom-uniform.ipynb

Uniform Catmull-Rom Splines

doc/euclidean/catmull-rom-properties.ipynb ends here.

In [CR74], a class of splines is presented which can be, in its most generic form, described mathemati-

cally with what is referred to as equation (1):

F(s)
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where the part w;(s)/ Y_w;(s) is called blending functions.

Since the blending functions presented above are, as of now, completely arbitrary we im-
pose some constraints in order to make them easier to use. We shall deal only with blending
functions that are zero outside of some given interval. Also we require that }_w;(s) does
not vanish for any s. We shall normalize w;(s) so that }_w;(s) = 1 for all s.

—[CRy4], section 3, “Blending Functions”
The components of the equation are further constrained to produce a interpolating function:

Consider the following case: Let x;(s) be any function interpolating the points p; through
pirx and let w;(s) be zero outside (s;_1,S;1x+1). The function F(s) defined in equation (1)
will thus be an interpolating function. Intuitively, this says that if all of the functions that
have an effect at a point, pass through the point, then the average of the functions will pass
through the point.

—[CRy4], section 2: “The Model”

Typo Alert

The typo “p; through s; ;" has been fixed in the quote above.

A polynomial of degree k that pass[e]s through k + 1 points will be used as x(s). In general
it will not pass through the other points. If the width of the interval in which w;(s) is non
zero is less than or equal to k + 2 then x;(s) will not affect F(s) outside the interpolation
interval. This means that F(s) will be an interpolating function. On the other hand if the
width of w;(s) is greater than k + 2 then x;(s) will have an effect on the curve outside the
interpolation interval. F(s) will then be an approximating function.

—[CR74], section 2: “The Model”
After limiting the scope of the paper to interpolating splines, it is further reduced to uniform splines:
[...] in the parametric space we can, without loss of generality, place s; = j.
—[CRy4], section 2: “The Model”

Whether or not generality is lost, this means that the rest of the paper doesn’t give any hints how
to construct non-uniform splines. For those who are interested anyway, we show how to do that in
the notebook about non-uniform Catmull-Rom splines (page 70) and once again in the notebook about the
Barry—Goldman algorithm (page 74).

After the aforementioned constraints and the definition of the term cardinal function ...

Cardinal function: a function that is 1 at some knot, 0 at all other knots and can be anything
in between the other knots. It satisfies F;(s;) = J;;.

—[CR74], section 1: “Introduction”
... the gratuitously generic equation (1) is made a bit more concrete:

If in equation (1) we assume x;(s) to be polynomials of degree k then this equation can be
reduced to a much simpler form:

F(s) = Y. piCie(s)
]

where the Cji(s) are cardinal blending functions and j is the knot to which the cardinal
function and the point belong and each Cji(s) is a shifted version of Cy(s). Cox(s) is a
function of both the degree k of the polynomials and the blending functions w(s):

k i

Corls) =2 [ TI (;+1>}w(s+i)

i=0 - j=i—kj#0
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[1]:

[2]:

[3]:

[4]:

[5]:

[6]:

[6]:

[6]:

[7]:

[8]:

In essence we see that for a polynomial case our cardinal functions are a blend of Lagrange
polynomials. When calculating Cyx(s), w(s) should be centered about %

—[CRy4], section 4: “Calculating Cardinal Functions”

This looks like something we can work with, even though the blending function w(s) is still not
defined.

import sympy as sp

We use t instead of s:

t = sp.symbols('t')
i, j, k = sp.symbols('i j k')
w = sp.Function('w')

COk = sp.Sum(
sp.Product(
sp.Piecewise((1, sp.Eq(j, 0)), (¢t / j) + 1, True)),
(G, i -k, 1)) * w( + 1),
(i, 0, k))
COk

1

k o1 forj=0
w(i+t
= ( ) jgk {1 + § otherwise

Blending Functions

[CR74] leaves the choice of blending function to the reader. It shows two plots (figure 1 and figure
3) for a custom blending function stitched together from two Bézier curves, but it doesn’t show the
cardinal function nor an actual spline created from it.

The only other concrete suggestion is to use B-spline basis functions as blending functions. A quadratic
B-spline basis function is shown in figure 2 and both cardinal functions and example curves are shown
that utilize both quadratic and cubic B-spline basis functions (figures 4 through 7). No mathematical
description of B-spline basis functions is given, instead the paper refers to [GR74]. That paper provides
a pair of equations (3.1 and 3.2) that can be used to recursively construct B-spline basis functions.
Simplified to the uniform case, this leads to the base case (degree o) ...

BO = sp.Piecewise((0, t < 1), (1, t < i + 1), (0, True))
BO

0 fori>t
1 fort<i+1
0 otherwise

. which can be used to obtain the linear (degree 1) basis functions:

Bl =(t -1i) * BO + (1 + 2 - t) * BO.subs(di, i + 1)

We can use one of them (where i = 0) as blending function:

wl = Bl.subs(i, 0)

With some helper functions from helper.py we can plot this.
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helper.py

[9]: from helper import plot_sympy, grid_lines

[10]: plot_sympy(wl, (t, -0.2, 2.2))
grid_lines ([0, 1, 2], [0, 11)

The quadratic (degree 2) basis functions can be obtained like this:

[11]: B2 = (¢t - 1) / 2 * Bl + (i + 3 - t) / 2 * Bl.subs(i, 1 + 1)

For our further calculations, we use the function with i = —1 as blending function:

[12]: w2 = B2.subs(i, -1)

[13]: plot_sympy(w2, (t, -1.2, 2.2))
grid_lines([-1, 0, 1, 2], [0, 11)
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-1 0 1 2
This should be the same function as shown in figure 2 of [CR74].

Cardinal Functions

The first example curve in the paper (figure 5) is a cubic curve, constructed using a cardinal function
with k = 1 (i.e. using linear Lagrange interpolation) and a quadratic B-spline basis function (as shown
above) as blending function.

With the information so far, we can construct the cardinal function C 1 (), using our quadratic B-spline
blending function w2 (which is, as required, centered about %):

[14]: CO1 = COk.subs(k, 1).replace(w, lambda x: w2.subs(t, x)).doit().simplify()

Cco1
(14l fo fort < —2
w fort < —1

—%—%Jrl fort <0
%—%—i—l fort <1
% fort <2
0 otherwise

[15]: plot_sympy(CO1, (t, -2.2, 2.2))
grid_lines(range(-2, 3), [0, 11)
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[16]:

[17]:

[18]:

[19]:

=2 -1 0 1 2

This should be the same function as shown in figure 4 of [CR74].

The paper does not show that, but we can also try to flip the respective degrees of Lagrange interpola-
tion and B-spline blending. In other words, we can set k = 2 to construct the cardinal function Cy»(t),
this time using the linear B-spline blending function w1 (which is also centered about %) leading to a
total degree of 3:

C02 = COk.subs(k, 2).replace(w, lambda x: wl.subs(t, x)).doit().simplify()

And as it turns out, this is exactly the same thing!

assert CO1 == CO02
By the way, we come to the same conclusion in our notebook about the Barry—Goldman algorithm (page 74),
which means that this is also true in the non-uniform case.

Many authors nowadays, when using the term Catmull-Rom spline, mean the cubic spline created using
exactly this cardinal function.

As we have seen, this can be equivalently understood either as three linear interpolations (more ex-
actly: one interpolation and two extrapolations) followed by quadratic B-spline blending or as two
overlapping quadratic Lagrange interpolations followed by linear blending.

Example Plot

import matplotlib.pyplot as plt
import numpy as np

To quickly check how a spline segment would look like when using the cardinal function we just
derived, let’s define a few points . ..

vertices = np.array([

(-0.1, -0.5),
0, 0),
(1, 0,

(continues on next page)
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(continued from previous page)

(0.5, 1),
D

. and plot F(t) (or F(s), as it has been called originally):

[20]: plt.scatter (*np.array([
sum( [vertices[i] * COl.subs(t, s - i + 1) for i in range(4)])
for s in np.linspace(0, 1, 20)]1).T)
plt.plot(xvertices.T, 'x:g');

[20]: [<matplotlib.lines.Line2D at Ox7fcebef687f0>]

1.0 1 X,,
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0.6 A
0.4 -
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_02 .

_04 .
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For calculating more than one segment, and also for creating non-uniform Catmull-Rom splines, the
class splines.CatmullRom (page 136) can be used. For more plots, see the notebook about properties of
Catmull-Rom splines (page 52).

Basis Polynomials

The piecewise expression for the cardinal function is a bit unwieldy to work with, so let’s bring it into
a form we know how to deal with.

We are splitting the piecewise expression into four separate pieces, each one to be evaluated at 0 <
t < 1. We are also reversing the order of the pieces, to match our intended control point order:

[21]: b_CR = sp.Matrix([
expr.subs(t, t + cond.args[1] - 1)
for expr, cond in COl.args[1:-1][::-1]1).T
b _CR.T

[21]: t(t—1)?
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[22] : from helper import plot_basis

[23]: plot_basis(*b_CR, labels=sp.symbols('xbm_i-1 xbm_i xbm_i+1 xbm_1i+2'))

[24] :

[25]:

[26]:

[26]:

[27]:

[277:

weight

For the following sections, we are using a few tools from utility.py:

from utility import NamedExpression, NamedMatrix

Basis Matrix

b_monomial = sp.Matrix([t**3, t**2, t, 1]).T
M _CR = NamedMatrix(r'{M \text{CR}}', 4, 4)
control_points = sp.Matrix(sp.symbols('xbm3:7"'))

As usual, we look at the fifth polynomial segment (from x4 to xs):

p4 = NamedExpression('pbm4', b_monomial * M_CR.name * control_points)
p4

X3

X4

X5

X6

pa=1[F 2 t 1] M

From the basis polynomials and the control points, we can already calculate p,(t) ...

p4.expr = b_CR.dot(control_points).expand().collect(t)
p4

S R T (-2 +2) +x
P4 272 T2 T2 3T TR, 2 o)

. and with a little bit of squinting, we can directly read off the coefficients of the basis matrix:
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[28]:

[28]:

[29]:

[30]:
[30]:

[31]:

[32]:

[33]:

[33]:

[34]:

[34]:

M_CR.expr = sp.Matrix([

[b.get(m, 0) for b in [
p4.expr.expand () .coeff(cv).collect(t, evaluate=False)
for cv in control_points]]

for m in b_monomiall)

M_CR.pull_out(sp.S.Half)

-1 3 -3 1

1
Mer=35129 o 1 o

This matrix also appears in section 6 of [CR74].
In case you want to copyé&paste it, here’s a plain text version:

print (_.expr)

(1/2)*Matrix ([

[-1, 3, -3, 1],
[ 2, -5 4, -1],
-1, o, 1, o],
Lo, 2, 0o, 0l

>

5 H]

And, in case somebody needs it, its inverse looks like this:

M _CR.I

1
Mcr™ ™ =

N = O =
N =
N — O

—_ =

print (_.expr)

Matrix([[1, 1, -1, 1], [0, O, O, 1], [1, 1, 1, 1], [6, 4, 2, 111

Tangent Vectors

To get the tangent vectors, we simply have to take the first derivative ...

pd4 = p4.diff(t)

. and evaluate it at the beginning and the end of the segment:

pd4.evaluated_at(t, 0)

d

X3 X5
dtp4 +

= 2 2

pd4.evaluated_at(t, 1)

4
dtp4

X4 X6

- 2 2

These two expressions can be generalized to (as already shown in the notebook about Catmull-Rom
properties (page 54)):

...................................................................................... doc/euclidean/catmull-rom-uniform. ipynb ends here.
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[1]:

[2]:

[3]:

[47]:

[5]:

[6]:

The following section was generated from doc/euclidean/catmull-rom-non-uniform.ipynb ...........cooiiiiiiiiiiiiiiiiiiiiiiiiinaiinn...

Non-Uniform Catmull-Rom Splines

[CR74] describes only the uniform case (page 61), but it is straightforward to extend the method to
non-uniform splines.

The method comprises using three linear interpolations (and extrapolations) between neighboring
pairs of the four relevant control points and then blending the three resulting points with a quadratic
B-spline basis function.

As we have seen in the notebook about uniform Catmull-Rom splines (page 65) and as we will again see in
the notebook about the Barry—Goldman algorithm (page 78), the respective degrees can be reversed. This
means that equivalently, two (overlapping) quadratic Lagrange interpolations can be used, followed
by linearly blending the two resulting points.

Since latter is both easier to implement and easier to wrap one’s head around, we use it in the following
derivations.

We will derive the tangent vectors (page 72) at the segment boundaries (which will serve as basis for
deriving non-uniform Kochanek—Bartels splines (page 101) later) and the basis matrix (page 73). See the
notebook about the Barry—Goldman algorithm (page 74) for an alternative (but closely related) derivation.

import sympy as sp
sp.init_printing()

x3, x4, x5, x6 = sp.symbols('xbm3:7")
t, t3, t4, t5, t6 = sp.symbols('t t3:7')

We use some tools from utility.py:

from utility import NamedExpression, NamedMatrix

As shown in the notebook about Lagrange interpolation (page 4), it can be interpolated using Neville’s
algorithm:

def lerp(xs, ts, t):
"""Linear interpolation.

Returns the interpolated value at time *tx*,
given the two values *xs* at times *ts*.

x_begin, x_end = xs
t_begin, t_end = ts
return (x_begin * (t_end - t) + x_end * (t - t_begin)) / (t_end - t_begin)

def neville(xs, ts, t):
"""Lagrange interpolation using Neville's algorithm.

Returns the interpolated value at time *t*,
given the values *xs* at times *ts*.

i

assert len(xs) == len(ts)
while len(xs) > 1:
step = len(ts) - len(xs) + 1
xs = [
lerp(*args, t)

(continues on next page)
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(continued from previous page)

for args in zip(zip(xs, xs[1:]), zip(ts, tslstep:]1))]
return xs[0]

Alternatively, sympy.interpolate()'* could be used.

We use two overlapping quadratic Lagrange interpolations followed by one linear interpolation:
[7]: p4 = NamedExpression(
'pbm4 ',
lerp([
neville([x3, x4, x5], [t3, t4, t5], t),

neville([x4, x5, x6], [t4, tb, t6], t),
1, [t4, t5], t))

Note

Since the two invocations of Neville’s algorithm overlap, some values that are used by both are unnec-
essarily computed by both. It would be more efficient to calculate each of these values only once.

The Barry—Goldman algorithm (page 74) avoids this repeated computation.

But here, since we are using symbolic expressions, this doesn’t really matter because the redundant
expressions should be simplified away by SymPy.

[8]: p4.simplify()
[8]: Pa=
(t — t4) (i’3 — t4) (t3 — i’5> (— (t — t4) (t4 — i’5) (—x5 (t — t6) + Xg (i’ — i’5)) + (t — té) (t5 — i’6) (—x4 (i’ — i’5) + x5 (i’ — t4))) -
(ts —ta) (t3 — t5) (fa -

The following expressions can be simplified by introducing a few new symbols A;:

[9]: delta3, deltad, deltab = sp.symbols('Delta3:6')
deltas = {
t4d - t3: delta3,
tb - t4: deltad,
t6 — t5: deltab,
t5 - t3: delta3 + delta4d,
t6 — t4: deltad + deltab,
t6 - t3: delta3 + deltad + deltab,
# A few special cases that SymPy has a hard time resolving:
t4d + t4 - t3: t4 + delta3,
t6 + t6 - t3: t6 + delta3 + deltad + deltab,

2 https:/ /docs.sympy.org/latest/ modules/polys/reference.html#sympy.polys.polyfuncs.interpolate
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[10]:

[11]:

[11]:

[12]:

[12]:

[13]:

[13]:

[14]:

[15]:

[16]:
[16]:

[177:

Tangent Vectors

To get the tangent vectors at the control points, we just have to take the first derivative ...

pd4 = p4.diff(t)

. and evaluate it at 4 and t5:

start_tangent = pd4.evaluated_at(t, t4)
start_tangent.subs(deltas) .simplify ()

d

A% (—x4 + X5) + Ai (—X3 + x4)
EI‘M =

—t, A3Ay (A3 + Dy)

end_tangent = pd4.evaluated_at(t, tb)
end_tangent.subs(deltas) .simplify ()

d

p _ —Aﬁx5 + Aﬁxé — A§x4 + A§x5
a; 4

b—ts A4ls (Mg + As)

Both results lead to the same general expression:

_ (i — 1) (e —xm0) + (= ti1)* (i1 — x7)
l (tivr = ti)(ti = tia) (bin — ti1)

An alternative (but very similar) way to derive these tangent vectors is shown in the notebook about the
Barry—Goldman algorithm (page 83).

You might encounter another way to write the equation for x( (e.g. at https://stackoverflow.com/a/
23980479/) ...

(x4 - x3) / (4 - t3) - (x5 - x3) / (5 - t3) + (x5 - x4) / (b - t4)

X4 +x5  —XxX3+x5  —X3+Xxy

—tt+ts —hatts  —f3tiy

... but this is equivalent to the equation shown above:

assert sp.simplify(_ - start_tangent.expr) == 0

Yet another way to skin this cat — sometimes referred to as Bessel tangent method or Overhauser method
or Bessel-Overhauser splines — is to define the velocity of the left and right chords:

v_left = (x4 - x3) / (t4 - t3)
v_right = (x5 - x4) / (tb - t4)

. and then combine them in this weighted-average way:

((£5 - t4) * v_left + (t4 - t3) * v_right) / (t5 - t3)

(—t3+ts)(—x4+x5) +,(*M+¢ﬂ(*x3+x0
—ty+ts —t341y

—t3+t5
Again, that’s the same as we had above:

assert sp.simplify(_ - start_tangent.expr) ==

Note
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Even though those expressions are commonly associated with the name Overhauser, they are not de-
scribing the tangents of Overhauser splines (as presented in [Ove68]).

Basis Matrix

We already have the correct result, but if we want to derive our basis matrix, we have to re-scale this a
bit. The parameter is supposed to go from 0 to 1 instead of from ¢4 to ts:

[18]: p4_normalized = pd.expr.subs(t, t * (t5 - t4) + t4)

[19]: M_CR = NamedMatrix(
r'{M {\text A )",
sp.Matrix([[c.expand() .coeff(x).factor() for x in (x3, x4, x5, x6)]
for ¢ in p4_normalized.as_poly(t).all_coeffs()]))
M_CR.subs(deltas) .simplify()

[19]: N Da(Ba+84+85)  _ Ay(D3+B4+As) Af
A3(A3+Ay) A3(Ay+As) As5(A3+Ag) A5(Dg+As5)
203 _ Ay(B3+2844285)  Ag(As+Agt285) A
Mcrs = As(A3+2A4) A3(Ay+As) As5(A3+Ay4) As(Ay+As)
A3(A3+Dy) Ag Az+Dy
0 1 0 0

We can try to manually simplify this a bit more:

[20]: M_CR.subs(deltas).simplify () .subs([[e.factor(), e] for e in [
deltad / (deltad + deltab) + deltad / delta3,
-deltad4 / (delta3 + deltad4) - deltad / deltab,
-deltad / (deltad + deltab) - 2 * deltad / delta3,
2 * deltad4 / (delta3 + deltad) + deltad / deltab,

1D
[20] : S I VO VI v} Af
A3(A3+Ay) Ay+As T A3 A3+Ay A5 As(As+As5)
243 Ay 20 284 4 Dy A3
MCR4 — A3(A3+A4) Ay+As As As+Ay As A5(A4+A5)
’ _ A3 —A3+Ay A3 0
A3(A3+Ag) A; Az+Ay
0 1 0 0

We can even introduce two new symbols in order to simplify it yet a bit more:

[21]: phi, psi = sp.symbols('Phi4 Psi4')
phi_psi_subs = {
phi: deltad / (delta3 + deltad),
psi: deltad / (deltad + deltab),
}
phi_psi_subs

[21]: {@4 : A4 ) 1114 : A4 }
A3+ Ay Ay + As

[22]: sp.Matrix([

(
-phi * delta4 / delta3,
psi + deltad / delta3,
-phi - (delta4 / deltab),
psi * deltad / deltab,

Jo [

(continues on next page)
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(continued from previous page)

phi * 2 * deltad / delta3,
-psi - 2 * deltad / delta3,
2 * phi + delta4 / deltab,
-psi * delta4 / deltab,

1o [
-phi * delta4 / delta3,
(deltad - delta3) / delta3,
delta3 / (delta3 + deltad),
0

1, [0, 1, 0, O]

D
227 [_DaPy Ay _ By AgYy
S e R W I
20474 _ __ 84 84 __DBaTly
A Yo— % & T2%4 As
APy Ayt As 0
A3 A3 A3 1A
0 1 0 0

[23]: assert sp.simplify(
_.subs(phi_psi_subs) - M_CR.expr.subs(deltas)) == sp.Matrix.zeros(4, 4)

Just to make sure that McR; is consistent with the result from uniform Catmull-Rom splines (page 61),
let’s set all A; to 1:

[24]: uniform = {
t3: 3,
td: 4,
©o3 B,
t6: 6,

M_CR.name: sp.Symbol(r'{M_\text{CR,uniform}}'),

[25]: M_CR.subs(uniform).pull_out(sp.S.Half)

[25]: -1 3 -3 1
112 -5 4 -1

MCR,uniform - 21=1 o 1 0

0o 2 0 ©0

................................................................................. doc/euclidean/catmull-rom-non-uniform.ipynb ends here.

The following section was generated from doc/euclidean/catmull-rom-barry-goldman.ipynb ..............ooiiiiiiiiiiiiiiiiiinaeiin...

Barry-Goldman Algorithm

The Barry-Goldman algorithm (named after Phillip Barry and Ronald Goldman) can be used to calculate
values of non-uniform Catmull-Rom splines (page 70). We have also applied this algorithm to rotation

splines (page 125).

[CRy74] describes “a class of local interpolating splines” and [BG88] describes “a recursive evaluation
algorithm for a class of Catmull-Rom splines”, by which they mean a sub-class of the original class,
which only contains splines generated from a combination of Lagrange interpolation (page 4) and B-
spline blending:

In particular, they observed that certain choices led to interpolatory curves. Although Cat-
mull and Rom discussed a more general case, we will restrict our attention to an important
class of Catmull-Rom splines obtained by combining B-spline basis functions and Lagrange
interpolating polynomials. [...] They are piecewise polynomial, have local support, are in-
variant under affine transformations, and have certain differentiability and interpolatory
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[1]:

properties.
—[BG88], section 1: “Introduction”

The algorithm can be set up to construct curves of arbitrary degree (given enough vertices and their
parameter values), but here we only take a look at the cubic case (using four vertices), which seems to
be what most people mean by the term Catmull-Rom splines.

The algorithm is a combination of two sub-algorithms:

The Catmull-Rom evaluation algorithm is constructed by combining the de Boor algorithm
for evaluating B-spline curves with Neville’s algorithm for evaluating Lagrange polynomi-
als.

—[BG88], abstract

Combining the two will lead to a multi-stage algorithm, where each stage consists of only linear
interpolations (and extrapolations).

We will use the algorithm here to derive an expression for the fangent vectors (page 83), which will
show that the algorithm indeed generates non-uniform Catmull-Rom splines (page 72).

Triangular Schemes

In [BG88], the presented algorithms are illustrated using triangular evaluation patterns, which we will
use here in a very similar form.

As an example, let’s look at the most basic building block: linear interpolation between two given
points (in this case x4 and x5 with corresponding parameter values t4 and ts5, respectively):

t5—t f—ty
f5—ty t5—ty
X4 X5

The values at the base of the triangle are known, and the triangular scheme shows how the value at
the apex can be calculated from them.

In this example, to obtain the linear polynomial p, 5 one has to add x4, weighted by the factor shown

t—ty
%*M)

next to it (2=1), and x5, weighted by the factor next to it (
= & y

The parameter ¢ can be chosen arbitrarily, but in this example we are mostly interested in the range
ty <t < ts5. If the parameter value is outside this range, the process is more appropriately called
extrapolation instead of interpolation. Since we will need linear interpolation (and extrapolation) quite
a few times, let’s define a helper function:

def lerp(xs, ts, t):
"""Linear interpolation.

Returns the interpolated value at time *tx*,
given the two values *xs* at times *ts*.

"

x_begin, x_end = xs
t_begin, t_end = ts
return (x_begin * (t_end - t) + x_end * (t - t_begin)) / (t_end - t_begin)

75



Neville’s Algorithm

We have already seen this algorithm in our notebook about Lagrange interpolation (page 4).

In the quadratic case, it looks like this:

P35
f5— —t3
ts—t3 t5—t3
P34 Pas
ty—t t—ty ts—t t—ty
ty—t3 ty—t3 t5—ty t5—ty
X3 X4 X5

The cubic case shown in figure 2 of [BG88].

[2]: import matplotlib.pyplot as plt
import numpy as np

Let’s try to plot this for three points:

[3]: points = np.array([

(0, 0,
(0.5, 2),
3, 0,

D

In the following example plots we show the uniform case (with t3 = 3, t; = 4 and t5 = 5), but don’t
worry, the algorithm works just as well for arbitrary non-uniform time values.

[4]: plot_times = np.linspace(4, 5, 30)

[5]: plt.scatter(xnp.array([

lerp(
[lerp(points[:2], [3, 4], t), lerp(points[i1:], [4, 5], ©)],
[3, 51, t)

for t in plot_times]).T)
plt.plot(*points.T, 'x:g')
plt.axis('equal');

[5]: (-0.15000000000000002, 3.15, -0.1, 2.1)
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[6]:

[6]:

2.00
1.75 -
1.50 A . %
1.251 . e
100 T .".... [
0.75 1 R

. .
.
g .
. . o
050_ N ..
. B
- -
. .
. .

0254 : "9

0.004 X

0.0 0.5 1.0 1.5 2.0 2.5

3.0

Note that the quadratic curve is defined by three points but we are only evaluating it between two of

them (for 4 <t <5).

De Boor’s Algorithm

This algorithm (named after Carl de Boor*3) can be used to calculate B-spline basis functions.

The quadratic case looks like this:

P3a5
t5—t t—ty
Ts—1Iy =
P34 Pss
t5—t t—ts te—t t—ty
I5—I3 f5—1i3 To—1Ia To—1s
X3 X4
The cubic case shown in figure 1 of [BG88].
plt.scatter (xnp.array ([
lerp(
[lerp(points[:2], [3, 5], t), lerp(points[1:], [4, 6], t)],
(4, 51, t)

for t in plot_times]).T)
plt.plot(*points.T, 'x:g')
plt.axis('equal');

(-0.15000000000000002, 3.15, -0.1, 2.1)

3 https:/ /en.wikipedia.org/wiki/Carl_R._de_Boor
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2.00 X..
1.75 -
1.50 1

1.25 A

1.00 A
0.75 A
0.50 A
0.25 A

0.004 % o
0.0 0.5 1.0 15 2.0 2.5 3.0

Combining Both Algorithms

Figure 5 of [CR74] shows an example where linear interpolation is followed by quadratic B-spline
blending to create a cubic curve.

We can re-create this example with the building blocks from above:
* At the base of the triangle, we put four known vertices.

* Consecutive pairs of these vertices form three linear interpolations (and extrapolations), resulting
in three interpolated (and extrapolated) values.

¢ On top of these three values, we arrange a quadratic instance of de Boor’s algorithm (as shown
above).

This culminates in the final value of the spline (given an appropriate parameter value t) at the apex of
the triangle, which looks like this:

P3456
t5—t t—ty

t5—14 t5—t4
P345 Pase
t t t t

t5— —t3 to— —14
t5—t3 ts—t3 te—t4 to—14
P34 Pas P56
ty—t t—ts ts—t t—ty te—t t—t5
ty—t3 ty—t3 t5—ty f5—ty te—ts5 te—15
X3 X4 X5 X6

Here we are considering the fifth spline segment p; 45 ¢(t) (represented at the apex of the triangle)
from x4 to x5 (to be found at the base of the triangle) which corresponds to the parameter range
ty <t < ts5. To calculate the values in this segment, we also need to know the preceding control point
x3 (at the bottom left) and the following control point x4 (at the bottom right). But not only their
positions are relevant, we also need the corresponding parameter values t3 and t4, respectively.

This same triangular scheme is also shown in figure 3 of [YSK11], except that here we shifted the
indices by +3.

Another way to construct a cubic curve with this algorithm would be to flip the degrees of interpolation
and blending, in other words:
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¢ Instead of three linear interpolations (and extrapolations), apply two overlapping quadratic La-
grange interpolations using Neville’s algorithm (as shown above) to x3, x4, x5 and x4, x5, x¢,
respectively. Note that the interpolation of x4 and x5 appears in both triangles but has to be
calculated only once (see also figures 3 and 4 in [BG88]).

* This will occupy the lower two stages of the triangle, yielding two interpolated values.
¢ Those two values are then linearly blended in the final stage.

Readers of the notebook about uniform Catmull-Rom splines (page 61) may already suspect that, for others
it might be a revelation: both ways lead to exactly the same triangular scheme and therefore they are
equivalent!

The same scheme, but only for the uniform case, is also shown in figure 7 of [BG88], which casually
mentions the equivalent cases (with m being the degree of Lagrange interpolation and n being the
degree of the B-spline basis functions):

Note too from Figure 7 that the case n =1, m = 2 [...] is identical to the case n =2, m =1

[...]
—[BG88], section 3: “Examples”

Not an Overhauser Spline
Equally casually, they mention:
Finally, the particular case here is also an Overhauser spline [Ove68].
—[BG88], section 3: “Examples”

This is not true. Overhauser splines — as described in [Ove68] — don’t provide a choice of pa-
rameter values. The parameter values are determined by the Euclidean distances between control
points, similar, but not quite identical to chordal parameterization (page 58). Calculating a value of a
Catmull-Rom spline doesn’t involve calculating any distances.

For completeness’ sake, there are two more combinations that lead to cubic splines, but they have their
limitations:

* Cubic Lagrange interpolation, followed by no blending at all, which leads to a cubic spline that’s
not C! continuous (only C), as shown in figure 8 of [BG88].

¢ No interpolation at all, followed by cubic B-spline blending, which leads to an approximating
spline (instead of an interpolating spline), as shown in figure 5 of [BG88].

Note

Here we are using the time instances of the Lagrange interpolation also as B-spline knots. Equation
(9) of [BG88] shows a more generic formulation of the algorithm with separate parameters s; and ¢;.
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[7]:

[8]:

[9]:

[10]:

[117:

[12]:

[12]:

[13]:

[13]:

[14]:
[14] :

[15]:

[15]:

[16]:

Step by Step

The triangular figure above looks more complicated than it really is. It's just a bunch of linear in-
terpolations and extrapolations.

Let’s go through the figure above, piece by piece.

import sympy as sp
t = sp.symbols('t')
x3, x4, x5, x6 = sp.symbols('xbm3:7")

t3, t4, tb, t6

sp.symbols('t3:7")

We use some custom SymPy-based tools from utility.py:

from utility import NamedExpression, NamedMatrix

First Stage

In the center of the bottom row, there is a straightforward linear interpolation from x4 to x5 within the
interval from f4 to ts.

p45 = NamedExpression('pbm_4,5', lerp([x4, x5], [t4, t5], t))
p45
xq (—t+t5) + x5 (t —tg)

—ts+1t5

Pas =

Obviously, this starts at:

p45.evaluated_at(t, t4)

=x
Pas =t 4

. and ends at:
p4b.evaluated_at(t, tb)

Pss = X5

t=ts5

The bottom left of the triangle looks very similar, with a linear interpolation from x3 to x4 within the
interval from f3 to t4.

p34 = NamedExpression('pbm_3,4', lerp([x3, x4], [t3, t4], t))
p34

X3 (—t+tg) + x4 (t—t3)
P34 —t3+ 1y

However, that’s not the parameter range we are interested in! We are interested in the range from t,4 to
ts. Therefore, this is not actually an interpolation between x3 and x4, but rather a linear extrapolation
starting at x4 ...

p34.evaluated_at(t, t4)
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utility.py

[16]:

[17]:

[17]:

[19]:
[19]:

[20]:
[20]:

[21]:

[21]:

[22]:

[22]:

[23]:
[23]:

[24] :

[24]:

= x4
t=ty

P34

. and ending at some extrapolated point beyond x4:

p34.evaluated_at(t, tb)

‘ _ % (t4—t5)+X4 (—t3+f5)
Paali —t3+ 14

Similarly, at the bottom right of the triangle there isn’t a linear interpolation from x5 to xg, but rather
a linear extrapolation that just reaches x5 at the end of the parameter interval (i.e. at ¢ = t5).

: pb6 = NamedExpression('pbm_5,6', lerp([x5, x6], [t5, t6], t))

p56

x5 (—t+te) + %6 (t —t5)
—t5 +t6

Pse =

p56.evaluated_at(t, t4)

_ x5 (=t +te) + % (ts —t5)
t:t4 _t5 + t6

Ps6

p56.evaluated_at(t, tb)

=X
Pse ‘ t—ts 5

Second Stage

The second stage of the algorithm involves linear interpolations of the results of the previous stage.

p345 = NamedExpression('pbm_3,4,5', lerp([p34.name, p45.name], [t3, t5], t))
p345

_ P3a (—t+ts) + pys (t—t3)
P345 "ttt

p456 = NamedExpression('pbm 4,5,6', lerp([p45.name, p56.name], [t4, t6], t))
p456

_ Pas (—t+te) + psg (t—ta)
P56 “tatte

Those interpolations are defined over a parameter range from f3 to t5 and from t, to tg, respectively.
In each case, we are only interested in a sub-range, namely from t4 to t5.

These are the start and end points at t4 and fs5:
p345.evaluated_at(t, t4, symbols=[p34, p45])

P34‘ (—t4+t5)+P45’ (—ts+ta)
‘ _ " lt=ty 2 t=ty
Paas t=ty —t3+t5

p345.evaluated_at(t, tb, symbols=[p34, p45])

P35 ‘t: = Pas ‘ o

ts ts
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[25]: p4b6.evaluated_at(t, t4, symbols=[p45, p56])

[25]:

Pise = P4is

t=ty t=ty

[26]: p4b6.evaluated_at(t, t5, symbols=[p45, p56])
[26]:

Pais (—t5+te) + Psg (—ts+ts)
o 7 t=ts5 T lt=ts

t=ts —ty +tg

Pise

Third Stage

The last step is quite simple:

[27]: p3456 = NamedExpression(

'pbm_3,4,5,6"',
lerp([p345.name, p456.name], [t4, t5], t))
p3456
(271  Paas(—tHis) 4 pyse(t—1y)
P3456 Tt t s

This time, the interpolation interval is exactly the one we care about.

To get the final result, we just have to combine all the above expressions:
[28]: p3456 = p3456.subs_symbols(p345, p456, p34, p45, p56).simplify()
p3456
[28]: P34a56 =
(t —ty) (t3 —t4) (t3 —t5) (— (t —t4) (ta —t5) (—x5 (t —te) + 26 (t —t5)) + (t —t6) (t5 —te) (—xa (t —t5) + x5 (t —ts))) -
(ts —1a) (t3 — £5) (f4 -

We can make this marginally shorter if we rewrite the segment durations as A; = t; 1 — t;:

[29]: delta3, delta4, deltab = sp.symbols('Delta3:6')
deltas = {
t4d - t3: delta3,
t5 - t4: deltad,
t6 - t5: deltab,
t5 - t3: delta3 + delta4d,
t6 — t4: deltad + deltab,
t6 - t3: delta3 + deltad + deltab,
# A few special cases that SymPy has a hard time resolving:
t4d + t4 - t3: t4 + delta3,
té + t6 — t3: t6 + delta3 + deltad + deltab,

[30]: p3456.subs(deltas)

[30]: P3456 =
—A3 (—A3 —Dy) (t—ta) (Da (t—tg) (—x5(t —te) +x6 (t —t5)) — As (t —te) (—xa (t —t5) + x5 ( —t4))) + As (—Ag — A
A3NIAs (—A3 — Ag) (—Ag — As

Apart from checking if it’s really cubic ...

[31]: sp.degree(p3456.expr, t)
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[31]: 3
. and if it’s really interpolating ...

[32]: p3456.evaluated_at(t, t4).simplify()
[32]:

P3as6|,_, — Y4
—i4

[33]: p3456.evaluated_at(t, t5).simplify()

[33]:

P3456 ’ e X5
=I5

... the only thing left to do is to check its ...

Tangent Vectors

To get the tangent vectors at the control points, we just have to take the first derivative ...

[34] : pd3456 = p3456.diff(t)

. and evaluate it at {4 and t5:
[35]: pd3456.evaluated_at(t, t4).simplify().simplify()

_ (s —ta)® (xa—x5) + (ta — 15)° (x3 — xa)
=ty (t3 —tg) (t3 — t5) (ts — t5)

[35]: 4
at P3456

[36]: pd3456.evaluated_at(t, t5).simplify()

_ (ta— t5)” (x5 — x6) + (t5 — t6)” (x4 — X5)
t=ts (tg —t5) (ts — tg) (ts — to)

[36]: 4
at P3456

If all went well, this should be identical to the result in the notebook about non-uniform Catmull-Rom
splines (page 72).

Animation

The linear interpolations (and extrapolations) of this algorithm can be shown graphically.

By means of the file barry_goldman.py, we can generate animations of the algorithm:

[37]: from barry_goldman import animation
[38]: from IPython.display import HTML

[39]: vertices = [
(0, 0),
(0.5, 1),
6, 1),
6, 2),
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barry_goldman.py

[40] :

[41]:

[42] :
[42] :

[1]:

[2]:

times = [
0,
il
5,
T
]

ani = animation(vertices, times)

HTML (ani.to_jshtml (default_mode='reflect'))

<IPython.core.display.HTML object>

.............................................................................. doc/euclidean/catmull-rom-barry-goldman. ipynb ends here.

1.7 Finite Difference Splines

When doing linear interpolation, the (constant) velocity along a line segment is

_ Xipl — X
Ui linear — r [
i+1 7 ki

The average velocity (using the the arithmetic mean’+) between two adjoining line segments is

.1 <xi —Xi1 | Xyl — xi)
X = = + ,
2\ ti—ti bt

which, according to Wikipedia', is called “finite difference” or “three-point difference”.

We can use this to define all outgoing and incoming tangents of a cubic Hermite spline (page 12),
leading to a C! continuous interpolating spline, which we call finite difference spline.

A Python implementation of finite difference splines is available in the splines.FiniteDifference (page 137)
class.

In the uniform case (t;11 — t; = 1 for all i), the above expression becomes

_ Xyl — Xi1

xi,uniform = fr
which makes uniform finite difference splines identical to uniform Catmull-Rom splines (page 52).

The following section was generated from doc/euclidean/finite-difference-properties.ipynb ............ccoiiiiiiiiiiiiiiiiiiiiiiaeoi.

Properties of Finite Difference Splines

Finite difference splines are interpolating cubic polynomial splines with C! continuity. They are very
similar to Catmull-Rom splines (page 52). In the uniform case, they are even identical.

Therefore, we will concentrate on the non-uniform case and on the differences to Catmull-Rom splines.

import splines
import matplotlib.pyplot as plt

We import a few helper functions for plotting from helper.py:

™ https:/ /en.wikipedia.org/wiki/Arithmetic_mean
'5 https:/ /en.wikipedia.org/wiki/Cubic_Hermite_spline#Finite_difference
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helper.py

[3]:

[4]:

[5]:

[6]:

[6]:

[71:

[8]:

[9]:

[10]:

from helper import plot_spline_1d, plot_spline_2d, grid_lines

Let’s start with a one-dimensional spline, shall we?

valuesl = 2, 4, 3, 3
gridl = 3, 6, 7, 10, 11

Here we compare the Python classes splines.FiniteDifference (page 137) and splines.CatmullRom
(page 136)-

fdl = splines.FiniteDifference(valuesl, grid=gridl, endconditions='closed')
crl = splines.CatmullRom(valuesl, grid=gridl, endconditions='closed')

plot_spline_1d(crl, label='Catmull-Rom')
plot_spline_1d(£fdl, label='finite difference')
grid_lines(gridil)

plt.legend();

<matplotlib.legend.Legend at 0x7£6404b6d390>

4.0 —— Catmull-Rom
—— finite difference

3.5

3.0

2.5

2.0

And now a two-dimensional spline:

values2 = [

(0, 0,
(1? O)’
1, 1,

grid2 = 5, 5.5, 8, 9.5

fd2 = splines.FiniteDifference(values2, grid=grid2, endconditions='closed')
cr2 = splines.CatmullRom(values2, grid=grid2, endconditions='closed')

plot_spline_2d(cr2, label='Catmull-Rom')
plot_spline_2d(fd2, label='finite difference')
plt.legend();
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[10]: <matplotlib.legend.Legend at 0x7f64048737b8>

e Catmull-Rom
1.04 « finite difference P0G,
00... ..o ..o
[ J o
0.8“ L ’ ..o ..
® ° ®
o0 .. .0
0.6 ° L K
P [ ] [ ]
e o H ‘
.. o .
0.4 - o o . s
[ [ ] v N
° [ ]
o2l o - -~
{ :; ..' . o®
. .. ° [} [ ]
0.0 4 ° ! . " » s o os :.Xooo e © °

-0.25 0.00 0.25 050 0.75 1.00 1.25 150 1.75

We can also use automatic parameterization, for example centripetal parameterization:

[11]: values3 = [

0, 0),
(5, 0),
(5, 0.5),
(1, 20,

[12]: fd3 = splines.FiniteDifference(values3, alpha=0.5, endconditions='closed')
cr3 = splines.CatmullRom(values3, alpha=0.5, endconditions='closed')

[13]: plot_spline_2d(cr3, label='Catmull-Rom')
plot_spline_2d(£fd3, label='finite difference')
plt.title('centripetal parameterization')
plt.legend();

[13]: <matplotlib.legend.Legend at 0x7f6402f789e8>
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[17:

[21:

[3]:

[4]:

centripetal parameterization

2.5 A e Catmull-Rom
e finite difference
2.0 R AMLL TP
\‘ oo ®
- ¢ ..o.
1.5+ o ....
®o ....
oo °®
o0 .=.
1.0 o0 o0
o0 .==.
:? s
0549 %
®
-
0.0 7 ".," Leossssssd
......::.g.o.o.o.o o. 0.0.0.0°...
_05 .
_10— T T T T T T
0 1 2 3 4 5

doc/euclidean/finite-difference-properties.ipynb ends here.

The following section was generated from doc/euclidean/finite-difference-uniform.ipynb ...,

Uniform Finite Difference Splines

. are identical to uniform Catmull-Rom splines (page 61).
doc/euclidean/finite-difference-uniform.ipynb ends here.

The following section was generated from doc/euclidean/finite-difference-non-uniform.ipynb ................cooiiiiiiiiiiiii ...

Non-Uniform Finite Difference Splines

Given the vertices x; (and some end conditions (page 104)), a finite difference spline can be constructed
using a non-uniform Hermite spline (page 24) and setting its tangent vectors to

.1 <xi —Xi_1 | Xiy1— xi)
Xi= = + .
2\ ti—tiq b —k

This is really all that’s needed, but if you are interested in the basis matrix, here’s its derivation:

import sympy as sp
sp.init_printing()

from utility import NamedExpression, NamedMatrix

t = sp.symbols('t')

We are considering the fifth spline segment from x4 to x5, but we will also need the preceding value
x3 and the following value x4, as well as all associated parameter values.

x3, x4, x5, x6 = sp.symbols('xbm3:7")
t3, t4, t5, t6 = sp.symbols('t3:7")
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[5]:

[5]:

[6]:

[7]:

[8]:

[8]:

[9]:

[9]:

control_values_FD = sp.Matrix([x3, x4, x5, x6])
control_values_FD

X3
X4
X5
X6

We use the aforementioned expressions for the tangents at x; and xs5:

xd4 = NamedExpression(

'xdotbm4 ',

((x4 - x3) / (t4 - t3) + (x5 - x4) / (tb6 - t4)) / 2)
xd5 = NamedExpression(

'xdotbmb',

((xb - x4) / (tb - t4) + (x6 - x5) / (t6 - tB)) / 2)
display(xd4, xdb5)

P + x5 —X3 + X4

YT 2(—ty+ts) | 2(—t3tty)
. —X5 + X¢ —X4 + X5
X5 —

- 2(—ts+te)  2(—ts+ts)

To simplify the results, we define a few symbols A; = t;;1 — t;. However, we are only using these for
display purposes, the calculations are still done with ¢;.

delta3, delta4, deltab = sp.symbols('Delta3:6')
deltas = {

t3: 0,

td: delta3,

t5: delta3 + delta4,

t6: delta3 + deltad + deltab,

We are using some definitions from the notebook about non-uniform Hermite splines (page 24), namely the
Hermite control values ...

control_values_H = sp.Matrix(sp.symbols('xbm4:6 xdotbm4:6"'))
control values_H

X4
X5
X4
X5

. and the Hermite basis matrix:

M _H = NamedMatrix(
r'{M_{\text 431,
sp.Matrix([[2, -2, 1, 1],
=8, 8, =2, =il,
o, o, 1, 0],
(1, 0, 0, 0]1) * sp.diag(l, 1, t5 - t4, t5 - t4))
M_H.subs(deltas)

2 2 Ay Mg

-3 3 —2A, -y
Mua=1, Ay 0
1 0 0 0
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Now we are looking for a matrix that can transform our control points into Hermite control values.

[10]: M_FDtoH = NamedMatrix(r'{M {\text ,4\to\text L4, 4, 4)

[11]: NamedMatrix(control values H, M FDtoH.name * control values FD)

[ 1 1] : X4 X3
X5 X4
Jl =M
24 FDA—HA x5
X5 Xg

Left-multiplying this matrix with the Hermite basis matrix will then result in the basis matrix for finite
difference splines:

[12]: M_FD = NamedMatrix(r'{M {\text ,4}F", M_H.name * M_FDtoH.name)
M_FD

[12]: Mppa = MyaMppa—HA4

The matrix coefficients can be obtained from the definition of the tangent vectors:

[13]: M_FDtoH.expr = sp.Matrix([
[expr.expand () .coeff(cv) for cv in control_values_FD]
for expr in control_values_H.subs([xd4.args, xd5.args])])
M_FDtoH. subs (deltas)

[13]: 0 1 0 0
0 0 1 0
Mrpaspa=|_1 1 , 1 1 0
2A3 2A4 2A3 2A4
0 _ 1 L4 1 1
28, 28s T 2A,  2As

In case you want to go into the other direction (from Hermite to finite difference), you can invert the

matrix:
[14]: M_HtoFD = NamedMatrix(r'{M_ {\text ,4\to\text ,AY}', M_FDtoH.I.expr)
M_HtoFD.subs(deltas) .expand ()
[14]: R4l R 224 0
1 0 0 0
Muya—rpa = 0 1 0 0
A A
A—i 1-— A—i 0 2Asg

To get the basis matrix, we just have to do the matrix multiplication:

[15]: M_FD = M_FD.subs_symbols(M_H, M_FDtoH).doit()
M_FD.subs(deltas) .expand ()

157 : _ Dy Y VN Ay
[15] s 1t 775 A5
Ay 3 B By 3 Ay
]\41:‘,]:),4 — Ai 12 23 2A51 2 2A5
D4 =+ B4 S 0
275 2T 24, 2
0 1 0 0

[16]: M_FD.subs(deltas).I.expand()

. A A A
[16]: = = -2 1
_ 0 0 0o 1
Mrps ™" = 1 1 1 1
5A5 3As As 4
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[177:

[18]:
[18]:

[1]:

[2]:

[3]:

Just as a quick check, using unit parameter intervals should lead to the uniform basis matrix:

uniform = {
t38 I,
t4: 4,
s B,
t6: 6,

M_FD.name: sp.Symbol(r'{M_\text{FD,uniform}}'),

M_FD.subs (uniform) .pull_out(sp.S.Half)

-1 3 -3 1

112 -5 4 -1
MFD,uniform = 211 o0 1 0
0 2 0 0

If everything went well, this should be the same matrix as the basis matrix for uniform Catmull-Rom
splines (page 61).

......................................................................... doc/euclidean/finite-difference-non-uniform.ipynb ends here.

1.8 Kochanek-Bartels Splines
Kochanek-Bartels splines (a.k.a. TCB splines) are named after Doris Kochanek and Richard Bartels (more
specifically, after their paper [KB84]).

A Python implementation if available in the splines.KochanekBartels (page 137) class.

The following section was generated from doc/euclidean/kochanek-bartels-properties.ipynb ............oooiiiiiiiiiiiiiiiiiiiiiniiinn...

Properties of Kochanek-Bartels Splines

Kochanek-Bartels splines (a.k.a. TCB splines) are interpolating cubic polynomial splines, with three
user-defined parameters per vertex (of course they can also be chosen to be the same three values for
the whole spline), which can be used to change the shape and velocity of the spline.

These three parameters are called T for “tension”, C for “continuity” and B for “bias”. With the default
values of C = 0 and B = 0, a Kochanek-Bartels spline is identical to a cardinal spline. If the “tension”
parameter also has its default value T = 0, it is also identical to a Catmull-Rom spline (page 61).

TODO: comparison of T with “tension” parameter of cardinal splines

import splines

helper.py

from helper import plot_spline_2d

import matplotlib.pyplot as plt
import numpy as np

def plot_tcb(*tcb, ax=None):
"""Plot four TCB examples."""
if ax is None:
ax = plt.gca()

vertices = [
(72”5, O) )
(71: 15) s

(continues on next page)

90


https://github.com/AudioSceneDescriptionFormat/splines/blob/8007a37/doc/euclidean/finite-difference-non-uniform.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/8007a37/doc/euclidean/kochanek-bartels-properties.ipynb
helper.py

(continued from previous page)

(0, 0.1),
(1, 1.5),
(2.5, 0),
(1, -1.5),
(0, -0.1),
(-1, -1.5),

for idx, tcb in zip([1, 7, 3, 5], tcb):
all_tcb = np.zeros((len(vertices), 3))
all tcblidx] = tcb
s = splines.KochanekBartels (
vertices, tcb=all tcb, endconditions='closed')
label = ', '.join(
f'{name} = {value/'
for name, value in zip('TCB', tcb)
if value)
plot_spline_2d(s, chords=False, label=label, ax=ax)
plot_spline_2d(
splines.KochanekBartels(vertices, endconditions='closed'),
color='lightgrey', chords=False, ax=ax)
lines = [1 for 1 in ax.get_lines() if not 1.get_label().startswith('_')]
# https://matplotlib.org/tutorials/intermediate/legend_guide.html#multiple-legends-on-
—~the-same-axes
ax.add_artist(ax.legend(
handles=lines[:2], bbox_to_anchor=(0, 0., 0.5, 1),
loc='center', numpoints=3))
ax.legend(
handles=lines[2:], bbox_to_anchor=(0.5, 0., 0.5, 1),
loc='center', numpoints=3)

Tension

[4]: plot_tcb((0.5, 0, 0), (1, O, 0), (-0.5, 0, 0), (-1, 0, 0))

1.5 A e 2 6% PR OSE I
[ J ) o
° o .o ° ° °
° ° L4 °
1.0— Y ® ® PY
° ° ° °
° ° ° °
’ ° e »
0.5 A > « « >
> « « >
,) eee T =0.5 ‘ x(( eee T =-0.5 )>
0.0 ‘e eoe T=1 S, eee T =-1 °
)] « « )]
» ° ° »
— . o [ J [ o
0.5 . . s .
[ ] ® ° °
[ ] o e [ ]
—1.0 A g ° PY )
[ ] Y ° L]
° Py ° ®
o o ° o
-1.5 4 o ®ve ®
-2 -1 0 1 2
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Continuity

TODO: When C; = 0, we are back at a Catmull-Rom spline. When C; = —1, we get a tangent like in a
piecewise linear curve. When C; = 1, we get some weird “inverse corners”.

[5]: plot_tcb((0, -0.5, 0), (0, -1, 0), (0, 0.5, 0), (0, 1, 0))
1.5+ 26 W20
° ° ° °
b ] ° °
° 4 o
1.0 A . i ° °
° [ ] [ ]
[ J [ ] [ ]
054 ° f R s
0.0 e C=05 e "0 C=05
=-1 - eee (C = “
[
—0.5 A .o °
PY [ ]
PY [ ]
—10_ ) e
° [ ]
[ ] ° ®
—1.5 4 bR ®e0eteqe®
-2 -1 0 1 2
T =1and C = —1: similar shape (a.k.a. “image”), different timing:
[6]: plot_tcb((1, 0, 0), (0, -1, 0), (0.5, 0, 0), (O, -0.5, 0))
1.5~ 4 o
... .. .. ....
° ° o °
1.0 ° ° ¢ ¢
[ ] [ ] L] ®
[ ] ) e [
° ° ° ¢
0.5 A ® ° » «
) ] ® ) J C
) [ ¢ )] C
) eee T =1 Cap® eee T =05 e
0.0 % C=- 36, eee C=-0.5 o
—0.5 - % o’
[ J [ ]
[ J [ J
L4
—10_ .. ..
o. ..
[ ] ..
-1.5 )¢ O
-2 -1 0 1 2

shape in “corners” is similar, but speed is different! with re-parameterization (TODO: link), it doesn’t
make too much of a difference.

A value of C = —1 on adjacent vertices leads to linear segments:
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[7]: verticesl = [(0, 0), (1, 1), (0, 2), (2, 2), (3, 1), (2, 0)]
s1 = splines.KochanekBartels(verticesl, tcb=(0, -1, 0), endconditions='closed')
plot_spline_2d(sl, chords=False)

2001 X o © o o o o © o o o o o o o X
° °
® °
1.75 - *e °.
° °
® °
1.50 A ., .
°. .,
1.25 A . ..
° )
1.00 - x x
° °
® °
0.75 - W° o
o’ o
0.50 1 . .o
® °
0.25 1 .° K
® °
° °
0001 X © ©¢ ©¢ © © ©¢ © © © © © o o o X
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Bias

“overshoot”: -1 is full “undershoot”

[8]: plot_tcb((0, 0, 0.5), (0, O, 1), (0, 0, -0.5), (0O, O, -1))

1.5 St e
° ° ° °
o’ ® ° %
® ] L4 e
10 N ® ® Y °
° ° ° ° ¢ °
° ° ° °
054 .° : % 'e
o eee B=0.5 “a¢” eee B=-0.5 °
0.0 q 3¢ - X
O B = 1 os“ﬂ\. [ X X ) B = - -~
3 e .o. [
—0.5 A o o ° o
C L] ®
. o ° °
—1.0 + ° ww .o ®
) e [ ] [
{ - .. °
® .o e °
_1.5 T ®eo0 ot os... [}
-2 -1 0 1 2

Bias —1 followed by +1 can be used to achieve linear segments between two control points:
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[9]: vertices2 = [(0, 0), (1.5, 0), (1, 1), (0, 0.5)]
tcb2 = [(O; O: _1): (Os O; 1)> (O: Oy _1)y (O: O: 1)]
s2 = splines.KochanekBartels(vertices?, tcb=tcb2, endconditions='closed')

plot_spline_2d(s2, chords=False)

1.2 4
1.0 4 o w ® e .
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A sequence of B = —1,C = —1 and B = +1 can be used to get two adjacent linear segments:
[10]: vertices3 = [(0, 0), (1, 0), (O, 0.5)]
tcb3 = [(0, 0, -1), (0, -1, 0), (0, 0, 1)]

s3 = splines.KochanekBartels(vertices3, tcb=tcb3, endconditions='closed')
plot_spline_2d(s3, chords=False)

0.7 A
0.6 A
0.5 A . x

044 o o

034 ., .

0.2 A o

0.1 - ¢ °

0.0 - ® X o o o o o o o o o o o o o o X

_01 -
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Combinations

accumulated tension and continuity vs. opposite T and C:

[11]: plot_tcb((1, -1, 0), (-1, 1, 0), (-1, -1, 0), (1, 1, O))

1.5 4 B4 D3¢
.. .. ) °
°
[ ® ] °
1.0 L4 L ° °
] ° ° °
° ° ° o.
° ° ° °
0.5 - o . . .,
) ® ) ..a
D [ ¢ J -~
) ¢ 3¢ f,
0.04 ¢ eee T=1,C=-1 = eee T=-1,C=-1 3¢
© 30 It
& o0 o T=-1'C= ° ); o0 o T=1’C= C
L4 [
—0.5 A . ° 0. .o
° ° e e
° [ ] ®
—1.0‘ ® ° .. . °
@ °
. ° o. .°
—1.5 1 ° )S¢ .° o g
[ ] ° . ® [ ] [ ] ...
=2 -1 0 1 2
[12]: plot_tcb((1, 0, 1), (-1, 0, 1), (0, -1, 1), (0, 1, -1))
1. T 1 :
5 ..J-.. A &..
° ° °
° ° ° N
1.0 L4 L4 ° e
° ° ° ®
L [ ] ) [ ]
L ° ° °
0.5 - . . . .
» ° . «
> (({\{J.’o ((
0.04 ¢ eee T=1,B=1 - eee C=-1,B=1 3¢
© 920 o
¢ eee T=-1,B=1 .o". % eee C=1,B=-1 S
° ¢ °
—0.57 ° ot .o .
° °
° ° ° °
—1.0 L4 ® ) °
° ° .. °
[ ] L () )
—1.5 1 ° )S¢ * o
[ ] 0 g0 ) ) ¢e ° [ ]
=2 -1 0 1 2
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The following section was generated from doc/euclidean/kochanek-bartels—uniform.IPYmb .....oouuiiuiitniin i

Uniform Kochanek-Bartels Splines

As a starting point, remember the tangent vectors from Catmull-Rom splines (page 52):

(xi —xi_1) + (%41 — x;)

% = 5

Parameters

TCB splines are all about inserting the parameters T, C and B into this equation.

Tension

see equation 4 in [KB84]

4= (1-T) (xi = xi—1) + (Xi41 — Xi)

Continuity

Up to now, the goal was to have a continuous first derivative at the control points, i.e. the incoming
and outgoing tangent vectors were identical:

This also happens to be the requirement for a spline to be C! continuous.

The “continuity” parameter allows us to break this continuity if we so desire, leading to different
incoming and outgoing tangent vectors (see equations 5 and 6 in [KB84]):

W) (1-Ci)(xi —x 1) + (1 +C)(xip1 — x;)
i 2

) - G —xia) + (1= C) (xip1 — %)

i 2

Bias

see equation 7 in [KB84]

(1+Bi)(x —xi1) + (1 = Bi) (%41 — x1)

X; = 5

All Three Combined

see equations 8 and 9 in [KB84]

) A=T)A+C)A+B)(xi —xi ) + (1= T)(1 = C) (1 = By)(xip1 — %)

P 2
0 A=T)A-C)A+B)(xi —xi 1) + (1 = T)(1+ C) (1 = Bi)(xip1 — %)
L 2

Note: There is an error in equation (6.11) of [Mil] (all subscripts of x are wrong, most likely copy-pasted
from the preceding equation).
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To simplify the result we will get later, we introduce the following shorthands (as suggested in [Mil]):

=(1-T)(1+C)(1+B))
(1— H(1-C)(1-B)
T;)(1-C)(1+B;)
d—( Ti)(1+C)(1 - By)

This leads to the simplified equations

(+) _ ai(xi —x_1) + bi(xip1 — x;)
! 2
() _ cilxi —xi—j) +di(xip1 — x;)
! 2

Calculation

[1]: import sympy as sp
Sp.init_printing()

[2]: from utility import NamedExpression, NamedMatrix

helper.py

[3]: from helper import plot_basis

Same control values as Catmull-Rom ...

[4]: x3, x4, x5, x6 = sp.symbols('xbm3:7")

[5]: control_values_KB = sp.Matrix([x3, x4, x5, x6])
control values_KB

[5]: [x3
X4
X5
X6

. but three additional parameters per vertex. In our calculation, the parameters belonging to x4 and
x5 are relevant:

[6]: T4, T5 = sp.symbols('T4 T5')
C4, C5 = sp.symbols('C4 C5')
B4, B5 = sp.symbols('B4 B5')

[7]: a4 = NamedExpression('ad', (1 - T4) * (1 + C4) * (1 + B4))
b4 = NamedExpression('b4', (1 - T4) * (1 - C4) * (1 - B4))
c5 = NamedExpression('c5', (1 - T5) * (1 - C5) * (1 + Bb5))
d5 = NamedExpression('d5', (1 - T5) * (1 + C5) * (1 - B5))

display(a4, b4, c5, db)

a4:(1—T4)(B4+1)(C4+1)
:( —By)(1-C4)(1-Ty)
=(1-G)(1-T5)(B5+1)
=(1-B5)(1-T5) (G +1)
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helper.py

[8]:

[9]:

[10]:

[10]:

[11]:

[11]:

[12]:

[12]:

[13]:

xd4 = NamedExpression(

'xdotbmd™ (+) ',

sp.S.Half * (ad4.name * (x4 - x3) + b4d.name * (x5 - x4)))
xdb = NamedExpression(

'xdotbm5™ (<) ',

sp.S.Half * (c5.name * (x5 - x4) + db5.name * (x6 - x5)))
display(xd4, xdb5)

(+) ﬂ4(—x3+x4)+b4(—x4+x5)

YT 2 2
(= 5 (—x4 +x ds (—x5 + x
) = &l : 5) 4 s ( : 6)

display(xd4.subs_symbols (a4, b4))
display(xd5.subs_symbols(c5, d5))

(+)  (1=By) (1-Cy) (1 =Ty) (=xg4+xs5)  (1—T4)(Bg+1)(Cqy+1)(—x3+2x4)

YT 2 + 2
W) = (1—=Bs)(1—=Ts5)(C5+1) (—x5 + x¢) n (1-GCs5) (1 —Ts) (Bs+1) (—x4 +x5)
5 2 2

Same as with Catmull-Rom, try to find a transformation from cardinal control values to Hermite
control values. This can be used to get the full characteristic matrix.

control_values_H = sp.Matrix([x4, x5, xd4.name, xd5.name])
control values_H

From the notebook about uniform Hermite splines (page 15):

M_H = NamedMatrix(
r'{M \text{H}}',
sp.Matrix([[2, -2, 1, 1],
[-3, 3, -2, -11,

[O’ O’ 1: O]a
[1, 0, 0, 011))
M_H
2 2 1 1
-3 3 -2 -1
Ma=14o o 1 o
1 0 0 0

M_KBtoH = NamedMatrix(r'{M_{\text{KB$,4\to$H}}}', 4, 4)
M_KB = NamedMatrix(r'{M {\text ,4}}', M_H.name * M_KBtoH.name)
M_KB

Mxg 4 = MuMxks 4 —H

NamedMatrix(control_values H, M_KBtoH.name * control_values_KB)
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[13]:

[14]:

[14]:

[15]:

[15]:

[16]:
[16]:

[177:

[18]:

[18]:

[19]:

[19]:

X5 X
4

.(+)| = Mkg,4 -H

x4 X5

i) X6

If we substitute the above definitions of %4 and x5, we can directly read off the matrix elements:

M_KBtoH.expr = sp.Matrix([

[expr.coeff(cv) for cv in control_values_KB]

for expr in control_values_H.subs([xd4.args, xd5.args]).expand()])
M_KBtoH.pull_out(sp.S.Half)

0 2 0 0

110 0 2 0

MKB'4 —H= 2 —a4 ag—Dby by 0
0 —C5 C5 — d5 d5

M_KB = M_KB.subs_symbols(M_H, M_KBtoH).doit()
M_KB.pull_out(sp.S.Half)

—ay ag—by—c5+4 by+c5s—ds—4 ds
M . 1 2a4 —2a4+2by+c5—6 —2by—c5+ds+6 —ds
KB4 — 2 | —ay ag — by by 0

0 2 0 0

And for completeness’ sake, its inverse:

M_KB.I
by by by—2 1
ag ag ag
0 0 0 1
Mgpa ™' =
KB4 1 1 1 1
—c5+ds5+6 —c5+ds5+4 —cs5+ds+2 1
ds ds ds
t = sp.symbols('t')
b _KB = NamedMatrix(r'{b {\text ,AYF', sp.Matrix([t**3, t**2, t, 1]).T * M_KB.expr)

b_KB.T.pull_out(sp.S.Half)
agt (=12 +2t —1)

bKB4T:1 t3(a4—b4—c25+4)+t2(—2a4+2b4+05—6)+t(a4—b4)+2
’ 2 t(bg+1? (bg+c5s —ds —4) +t(—2by —c5 +ds5 +6))
dst? (t — 1)

To be able to plot the basis functions, let’s substitute ay, b4, c5 and ds back in (which isn't pretty):

b_KB = b_KB.subs_symbols(a4, b4, c5, db).simplify()
b_KB.T.pull_out(sp.S.Half)

bkpa' =

F(By+1)(Cy
1| ((Be—1)(C4—=1)(Ta—1) = (B4 +1) (C4+1) (T4 =1) = (Bs +1) (C5 = 1) (Ts = 1) +4) + 2 (=2(By — 1) (C4 — 1
2 —t (P ((B4—=1)(C4 = 1) (Ty = 1) + (Bs = 1) (C5 +1) (Ts = 1) = (Bs +1) (C5 — 1) (T5 — 1) +4) — £ (2 (I

t2(Bs — 1) (
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[20]: labels = sp.symbols('xbm_i-1 xbm_i xbm_i+1 xbm_i+2')

[21]: plot_basis(

*b_KB.expr.subs({T4: 0, T5: 0, C4: 0, C5: 1, B4: 0, B5: 0}),
labels=1labels)

weight

0 1
t
[22]: plot_basis(
*b_KB.expr.subs({T4: 0, T6: 0, C4: 0, C5: -0.5, B4: 0, B5: 0}),
labels=1labels)
1
— Xj-1
—
g — %
o —_— X
= i+1
— Xj4+2
0 — _—
0 1

TODO: plot some example curves

doc/euclidean/kochanek-bartels-uniform. ipynb ends here.
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[1]:

[2]:

[3]:

The following section was generated from doc/euclidean/kochanek-bartels—non-uniform.ipynb ........c..oeeuiiiniiiniiniiniiniaia..

Non-Uniform Kochanek-Bartels Splines

[KB84] mainly talks about uniform splines. Only in section 4, “Adjustments for Parameter Step Size”,
they briefly mention the non-uniform case.

TODO: show equations for adjusted tangents

Unfortunately, this is wrong.

TODO: show why it is wrong.

Instead, we should start from the correct tangent vector for non-uniform Catmull-Rom splines:

~ (tig — t)* (i — xi1) + (4 — tio1) (xi1 — x1)

i =

(tivn — ti) (ti — ti) (tip1 — tio1)
Parameters
In general incoming tangent 32'1(7) and outgoing tangent 5c§+) at vertex x;:
= (1= T)(1+C)(1+B)
=(1-T)(1-C)(1—-B))
=(1-T)(1-C)(1+B;)
d = (1-T)1+C)(1 - Bi)
) = a;(tizn — ) (x; — xi_1) + bi(t; — ) (%11 — x;7)
! (tz+l )( —ti- )(terl )
x(‘) _ Ci(tiJrl — ti) (xl — Xj_ l) + 1(tz ) (xz+1 - xz)
' (h+l ﬂ)(ﬁ bﬂ)(h+l ﬂ—l)

In the calculation below, we consider the outgoing tangent at x4 and the incoming tangent at xs.

ag = (1—Ty)(1+ Cq)(1+ Bg)
by = (1—T4)(1—Cy4)(1 — By)
s =(1—T5)(1—Cs)(1+ Bs)
ds = (1—Ts)(1+4Cs)(1 — Bs)
+(5) _ Aa(ts — ta)*(x4 — x3) + ba(ts — 5) (%5 — x4)
v (ts — ta)(ts — t3)(t5 — t3)
40 _ Cslte = t5)? (x5 — x4) +ds (b5 — ta)* (6 — X5)
° (te —t5)(t5 — t4)(te — ta)

Calculation

import sympy as sp
sp.init_printing()

from utility import NamedExpression, NamedMatrix
x3, x4,

x5, x6 = sp.symbols('xbm3:7")
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[4]:

[5]:

[5]:

[6]:

[7]:

[8]:

[9]:

t, t3, t4, tb, t6 = sp.symbols('t t3:7"')

Same control values as Catmull-Rom ...

control_values_KB = sp.Matrix([x3, x4, x5, x6])
control values_KB

X3
X4
X5
X6

. but three additional parameters per vertex. In our calculation, the parameters belonging to x4 and
x5 are relevant:

T4, T5 = sp.symbols('T4 T5")
C4, C5 = sp.symbols('C4 C5')
B4, B5 = sp.symbols('B4 B5')

a4 = NamedExpression('a4', (1 - T4) * (1 + C4) = (1 + B4))
b4 = NamedExpression('b4', (1 - T4) * (1L - C4) * (1 - B4))
c6 = NamedExpression('c5', (1 - T5) * (1 - C5) * (L + B5))
d5 = NamedExpression('d5', (1 - T5) * (1L + C5) * (1 - B5))
display(a4, b4, c5, db)
114:(1—T4)(B4—|—1)(C4+1)

=(1-B4)(1-C4) (1-Ty)

=(1-GC5)(1-T5)(Bs +1)

=(1-B5)(1-T5)(Cs +1)

xd4 = NamedExpression(
'xdotbm4d~ (+) ',
(a4 .name * (tb - t4)**2 * (x4 - x3) + bd.name * (t4 - t3)**2 * (x5 - x4)) /
((t5 - t4) * (4 - t3) = (t5 - t3)))

xd5 = NamedExpression(
'xdotbmb5~ (=)',
(cb.name * (t6 - tB)**2 x (x5 - x4) + d5.name * (t5 - t4)**2 * (x6 - x5)) /
((t6 - t5) * (5 - t4) * (t6 - t4)))

display(xd4, xd5)

d) sttt t5)* (—X3 + x4) + by (—t3 + t4)* (—x4 + x5)
4 (—t3+tg) (—tz +t5) (—ty +t5)

Il Gl s to)” (—X4 + x5) +d5 (—ts + t5)* (=5 + %)
> (—ts+ts5) (—ty+te) (—ts +t6)

display(xd4.subs_symbols (a4, b4))
display(xd5.subs_symbols(cb5, d5))

(1-By) (1-Cy) (1= Ty) (—ts3+ts)* (—xa+x5) + (1= Tp) (Bs+1) (Ca+1) (—ts+ t5)* (—x3 + x4)
(—t3+ts) (—tz +t5) (—ts + ts5)

(1—Bs) (1 —Ts) (Cs+1) (—ts +t5)* (—x5+ %) + (1 — Cs) (1 — T5) (Bs + 1) (—t5 + t6) (—x4 + x5)
(—ta+ts5) (—ta+te) (—t5 +t6)
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[10]:

[10]:

[11]:

[11]:

[12]:

[12]:

[13]:

[13]:

[14]:

[14]:

[15]:

Same as with Catmull-Rom, try to find a transformation from cardinal control values to Hermite
control values. This can be used to get the full basis matrix.

control_values_H = sp.Matrix([x4, x5, xd4.name, xd5.name])
control_values_H

From the notebook about non-uniform Hermite splines (page 24):

M_H = NamedMatrix(
r'{M_{\text 47,
sp.Matrix([[2, -2, 1, 1],
[-3, 3, -2, —-1],
o, o, 1, ol,
[1, O, 0, 0]1) * sp.diag(l, 1, t&6 - t4, tb6 - t4))

M_H
2 =2 —ty+ts —ty+ts
Mes s — -3 3 2t4—2t5 ty—1t5
HEZ 10 0 —tyitts 0

1 0 0 0

M_KBtoH = NamedMatrix(r'{M {\text{KB$,4\to$H},4}}', 4, 4)
M_KB = NamedMatrix(r'{M {\text ,4}F', M_H.name * M_KBtoH.name)
M_KB

Mxga = My,4MkB,4 Ha

NamedMatrix(control values H, M _KBtoH.name * control values KB)

X4 X3
X5 X
4
. =M
xé(}-i—) KB, 4 —H,4 x5
(-)
% X
x5 6

(+)

If we substitute the above definitions of X, ’ and 92(_)

, we can directly read off the matrix elements:
M_KBtoH.expr = sp.Matrix([

[expr.coeff (cv) .simplify() for cv in control_values_KB]

for expr in control_values_H.subs([xd4.args, xd5.args]).expand()])
M_KBtoH

Mxs,4 ~H4 =

0 1 0 0

0 0 1 0

ay(ty—ts) —ayt3+2aytyts—ag2+byts—2bst3ts+bst3 by(—ts+ts) 0
B—taty—tats+tyts 1oty —t3ts—t3 3 +ta 2155 —tyt2 taty—tats—tyts+12
0 cs(ts—te) —cstd+2cstste—csti+dst;—2dstyts+dstd ds(—ty+ts)
B2 —tyts—tatettsts t2t5— 13t —tat2+tyt2+ 12t —tst2 tats—tyte—tsto+1

delta3, delta4, deltab = sp.symbols('Delta3:6')

deltas = {
t3: 0,
t4: delta3,

t5: delta3d + delta4,

(continues on next page)
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[16]:
[16]:

[177:

[17]:

[18]:

[18]:

[1]:

[21:

t6: delta3 + deltad + deltab,

M_KBtoH.subs(deltas) .simplify ()

(continued from previous page)

0 1 0 0
0 0 1 0
2 2
Mxkp,4 sH4a = | ___Daay —A3by+A5ay Asby 0
A3(B3+Dg)  B3Ag(A3+Dy) Ay A3+A§1)
0 __ Dses —Ads+A5cs Ayds
Ay(Bg+Ds5)  DgAs(Dy+Ds5)  As(Bg+As)
M_KB = M_KB.subs_symbols(M_H, M_KBtoH).doit()
M_KB.subs(deltas) .expand ()
Mxkpa =
_ Ay Mgy Ay _ Dabscs 4 o B304by A3ds o MgAEes ) A%ds
A§EA3A4 7A§A427A3Ai 7A§A473A3A£ A3+AyA5 AzAy+AS 7A§A5;A4A§ 7A§A572A4A§ A4A5;rA§
2A4114 o 2A3A4b4 2A4u4 AyAscs o o 2A3A4by o A4d5 + A4A5C5 + 3 A4d5
A2+Az0 —AMIA—M3AT T —AIAL DA T ATH+ALAs A3Ag+AT —ANIAS—AAZ T —AIAs—AGA2 AyAs5+A2
Ny ASDgby Alay A3Agby 0
A2+AzAy —MA —A3AT —AIA—AA2 AzAg+A2
0 1 0 0
And for completeness’ sake, its inverse:
M_KB.subs(deltas) .expand() .I
Adby A3by A3(A3by—A3—Ay) 1
Aiﬂ4 Aia4 Aiﬂ;l
0 0 0 1
Mgps ' =
KB4 1 1 1 1
A3ds+303A5—A2c5+3A2  A3ds+2M1As—Akcs+2A2  A2ds+AgAs—A2cs+A2 1

A3ds A3ds

TODO: plot some example curves

A3ds

........................................................................... doc/euclidean/kochanek-bartels-non-uniform. ipynb ends here.

1.9 End Conditions

The following section was generated from doc/euclidean/end-conditions-natural.ipynb

Natural End Conditions

For the first and last segment, we assume that the inner tangent is known. We try to find the outer

tangent by setting the second derivative to 0.

We are looking only at the non-uniform case here, it’s easy to get to the uniform case by setting A; = 1.

natural (a.k.a. “relaxed”?)

import sympy as sp
sp.init_printing(order='rev-lex')

utility.py

from utility import NamedExpression
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utility.py

[3]: t = sp.symbols('t')

Begin

first polynomial segment: p,(t), t € [to, t1]

[4]: t0, t1 = sp.symbols('t:2')
[5]: a0, b0, cO, dO = sp.symbols('a:dbmO"')

[6]: dO * t**3 + cO * t**2 + b0 * t + al

[6]: d0t3 + Cot2 + bot + ag

[7]: pO = NamedExpression('pbmO', _.subs(t, (t - t0) / (t1 - t0)))
pO
[73: do(—to+1)%  co(—to+1)% bo(—to+t
py — 0 (—to 3)Jro( 0 2)Jro( 0 )+a0
(k1 —to) (k1 —to) b=t

Velocity = Tangent Vector = Derivative:

[8]: pd0 = p0.diff ()

pdO

(8l: d 3dy (—tg + f)z co (—2t0 + 2t) by
3P0 = 3T 2
dt (1 — to) (1 — to) = to

similar to notebook about non-uniform Hermite splines (page 24)

xg = py(to) (4)
x1 = po(t1) (5)
0 = py(to) (6)
i1 = po(t) (7)

[9]: equations_begin = [
pO.evaluated_at(t, t0).with_name('xbm0'),
pO.evaluated_at(t, tl1).with_name('xbml'),
pdO.evaluated_at(t, tO).with_name('xbmdot0'),
pdO.evaluated_at(t, tl) .with_name('xbmdotl'),

only for display purposes, the calculations are still done with ¢;

[10]: delta_begin = [
(t0, 0),
(t1, sp.Symbol('Deltald')),

[11]: for e in equations_begin:
display(e.subs(delta_begin))

X0 = ag
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x1 =do+ cg+ bg+ ag

5(.'0:@

Ao
o3 20 b
TN A0 A

[12]: coefficients_begin = sp.solve(equations_begin, [a0, b0, cO, d0])

[13]: for c, e in coefficients_begin.items():
display(NamedExpression(c, e.subs(delta_begin)))

ap = xo

by = Ao

co = 3x1 — 3xg — Agx1 — 20px9
dg = —2x1 + 2x9 + Aoy + Agxg

Acceleration = Second Derivative

[14]: pdd0 = pd0.diff (t)

pdd0
[14]: dzp  Bdp (—2ty +21) N 2¢g
2 b=
dr? (i — to)® (i — to)*

[15]: pddO.evaluated_at(t, t0)

[15]: 42 2¢o
ﬁpo =

2
=ty (t1 —to)
[16]: sp.Eq(_.expr, 0).subs(coefficients_begin)
[16]: 2 (3x1 — 3xg — t1%1 — 2% + tok1 + 2f0%0)

=0
(t — f0)2

[17]: xd0 = NamedExpression.solve(_, 'xbmdotO')
xd0.subs(delta_begin)
[17]: = — —3x1 + 3x0 + Agxq
0 2A0

End

N vertices, N — 1 polynomial segments
last polynomial: py_,(t), t € [tN—2, tN—1]

To simplify the notation a bit, let’s assume we have N = 10 vertices, which makes pg the last polyno-
mial segment.

[18]: a8, b8, c8, d8 = sp.symbols('a:dbm8"')
[19]: t8, t9 = sp.symbols('t8:10")

[20]: d8 * t**x3 + c8 * t**x2 + b8 * t + a8
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[20] ¢ dgt® + cgt® + bgt + ag

[21]: p8 = NamedExpression('pbm8', _.subs(t, (¢t - t8) / (t9 - t8)))
P8
[21]: dg (—tg + t)° —tg+1)*  bg(—tg+t
pe = 8 ( 8+3) L (ot 2) L bsl 8+)+a8
(to — t3) (to —t3) fo — I3

[22]: pd8 = p8.diff(t)

pd8

[22]: 4 3dg (—tg+1)*  cg(—2tg+2t) bg
:Ps = 5T 2
at (to —t3) (to —t3) fo —fg

(tN-2) ®)
XN-1= Py_o(tn-1) ©)
' ( ) (10)
( ) (11)

[23]: equations_end = [
p8.evaluated_at(t, t8).with_name('xbm8'),
p8.evaluated_at(t, t9).with_name('xbm9'),
pd8.evaluated_at(t, t8).with_name('xbmdot8'),
pd8.evaluated_at(t, t9).with_name('xbmdot9'),

[24]: delta_end = [
(t8’ O) b
(t9, sp.Symbol('Delta8')),

[25]: for e in equations_end:
display(e.subs(delta_end))

Xg = ag
x9 = dg + cg + bg + ag
. bg
xs I8
L 3d8 2cg bg
T A s By

[26]: coefficients_end = sp.solve(equations_end, [a8, b8, c8, d8])

[27]: for c, e in coefficients_end.items():
display(NamedExpression(c, e.subs(delta_end)))

ag = Xxg

bg = Agis

cg = 3x9 — 3xg — Agkg — 2Agxg
dg = —2x9 + 2xg + Agig + Agig
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[28]:

[28]:

[29]:
[29]:

[30]:

[30]:

[31]:

[31]:

[32]:

[33]:

pdd8 = pd8.diff (t)

pdds

d? e = 3dg (—2tg + 2t) n 2cg
& g =

dt? (to — tg)° (to — t5)*

second derivative at the end of the last segment:

pdd8.evaluated_at(t, t9)

d? 3dg (2tg — 2t 2¢
Ll - s (2t 38)+ 8
a2y (to —tg) (to —tg)

sp.Eq(_.expr, 0).subs(coefficients_end)

2 (3X9 — 3xg — tgxg — 2tgxg + tgkg + 2fgkg) " 3 (2t9 — 2t8) (—ZX9 + 2xg + tgxg + foxg — tgkg — tg?'Cg) _
(to — tg)? (ts — tg)°

xd9 = NamedExpression.solve(_, 'xbmdot9')
xd9.subs(delta_end)

B —3x9 + 3xg + Agxg
2Ag

Xg =
Luckily, that’s symmetric to the result we got above.

Example

one-dimensional; 3 time/value pairs are given. The slope for the middle value is given, the begin and
end slopes are calculated using the “natural” end conditions as calculated above.

values = 2, 2, 2
times = 0, 4, 5
slope = 2

sp.plot ((
pO.subs(coefficients_begin) .subs_symbols(xdO) .expr.subs({
t0: times[0],
t1l: times[1],
sp.Symbol ('xbm0'): values[0],
sp.Symbol ('xbml'): values[1],
sp.Symbol ('xbmdotl'): slope,
D,
(t, times[0], times[1])
), (
p8.subs(coefficients_end) .subs_symbols(xd9) .expr.subs({
t8: times[1],
t9: times[2],
sp.Symbol ('xbm8'): values[1],
sp.Symbol ('xbm9'): values[2],
sp.Symbol ('xbmdot8'): slope,
D,
(t, times[1], times[2])
), axis_center=(0, values[1]));
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[33]:

f(x)

2.25 A

2.66

() 1 2 3 5

1.75 A

1.50 A

1.25 -

1.00 A

0.75 A

0.50 A

<sympy.plotting.plot.Plot at 0x7£4b9f511b38>

.................................................................................. doc/euclidean/end-conditions-natural.ipynb ends here.

2 Rotation Splines

The following section was generated from doc/rotation/slerp.iPYnb ... ..o

2.1 Spherical Linear Interpolation (Slerp)

“Great arc in-betweening”

The term “Slerp” for “spherical linear interpolation” has been coined by [Sho85] (section 3.3). It is
defined as:

u
Slerp(q1,92;u) = q1 (qflqz)

The parameter u moves from 0 (where the expression simplifies to g;) to 1 (where the expression
simplifies to 7).

The Wikipedia article for Slerp'® provides four equivalent ways to describe the same thing:

t
Slerp(qo,41;t) = 4o (qa 1!71)

— o (5'a)

16 https:/ /en.wikipedia.org/wiki/Slerp#Quaternion_Slerp
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Shoemake also provides an alternative formulation:

sin(1—u)6 sin uf
sin @ N sin 6 2/

Slerp(q1,42;u) =
where the dot product g1 - g2 = cos 6.

[1]: import numpy as np

helper.py

[2]: from helper import angles2quat, animate_rotations, display_animation

[3]: def slerp(one, two, t):
return (two * one.inverse())**t * one

[4]: q1
q2

angles2quat (45, -20, -60)
angles2quat (-45, 20, 30)

[5]: times = np.linspace(0, 1, 50)

[6]: ani = animate rotations({
'slerp(ql, g2)': slerp(ql, g2, times),
'slerp(ql, -g2)': slerp(ql, -g2, times),
}, figsize=(6, 3))

[7]: display_animation(ani, default_mode='reflect')

Animations can only be shown in HTML output, sorry!

Piecewise Slerp
[8]: from splines.quaternion import PiecewiseSlerp

[9]: s = PiecewiseSlerp([
angles2quat (0, 0, 0),
angles2quat (90, 0, 0),
angles2quat (90, 90, 0),
angles2quat (90, 90, 90),
1, grid=[0, 1, 2, 3, 6], closed=True)

[10]: times = np.linspace(s.grid[0], s.grid[-1], 100)

[11]: ani = animate _rotations({
'"Piecewise Slerp': s.evaluate(times),
}, figsize=(3, 3))

[12]: display_animation(ani, default_mode='loop')

Animations can only be shown in HTML output, sorry!
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helper.py

[13]:

[14]:

[15]:

[16]:

[177:

[18]:

[19]:

[20]:

[21]:

[22]:

[23]:

Slerp vs. Nlerp

“normalized linear interpolation”

from splines.quaternion import Quaternion

def lerp(one, two, t):
"""Linear interpolation.

t can go from O to 1.

"

return (1 - t) * one + t * two

def nlerp(one, two, t):
"""Normalized linear interpolation.

Linear interpolation in 4D quaternion space,
normalizing the result.

t can go from O to 1.

i

one = np.array(one.xyzw)

two = np.array(two.xyzw)

*vector, scalar = lerp(one, two, t)

return Quaternion(scalar, vector).normalize()

ql = angles2quat(-60, 10, -10)
g2 = angles2quat(80, -35, -110)

assert ql.dot(g2) > O
ani_times = np.linspace(0, 1, 50)

ani = animate_rotations({

'Slerp': slerp(ql, g2, ani_times),

'Nlerp': [nlerp(ql, g2, t) for t in ani_times],
}, figsize=(6, 3))

display_animation(ani, default_mode='reflect')

Animations can only be shown in HTML output, sorry!
Let’s create some still images:
from helper import plot_rotations

plot_times = np.linspace(0, 1, 9)

plot_rotations({

'Slerp': slerp(ql, g2, plot_times),

'Nlerp': [nlerp(ql, g2, t) for t in plot_times],
}, figsize=(8, 3))
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[24] :

[25]:

[26]:

[27]:

[28]:

Slerp

Nlerp

Start and end are (by definition) the same, the middle is also the same (due to symmetry). And in
between, there are very slight differences.

Since the differences are barely visible, we can try a more extreme example:

g3 = angles2quat(-170, 0, 45)
g4 = angles2quat (120, -90, -45)

assert g3.dot(g4) < 0

Please note that this is a rotation by an angle of far more than 180 degrees!

ani = animate_rotations({

'Slerp': slerp(q3, g4, ani_times),

'Nlerp': [nlerp(q3, g4, t) for t in ani_times],
}, figsize=(6, 3))

display_animation(ani, default_mode='reflect')

Animations can only be shown in HTML output, sorry!

plot_rotations({

'Slerp': slerp(q3, g4, plot_times),

'Nlerp': [nlerp(q3, g4, t) for t in plot_times],
}, figsize=(8, 3))

Slerp

A4 PRAER] =

144 /88am-
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[1]:

[2]:

[3]:

[4]:

[5]:

[6]:

[7]:

[8]:

The following section was generated from doc/rotation/de-casteljau.ipynb .........oooiiiiiiii i

2.2 De Casteljau’s Algorithm

In [Sho85], which famously introduces quaternions to the field of computer graphics, Shoemake sug-
gests to apply a variant of the De Casteljau’s Algorithm (page 39) to a quaternion control polygon, using
Slerp (page 109) instead of linear interpolations.

def slerp(one, two, t):
return (two * one.inverse())**t * one

import numpy as np

helper.py

from helper import angles2quat, animate_rotations, display_animation

“Cubic”

[Sho85] only talks about the “cubic” case, consisting of three nested applications of Slerp.

The resulting curve is of course not simply a polynomial of degree 3, but something quite a bit more
involved. Therefore, we use the term “cubic” in quotes.

Shoemake doesn’t talk about the “degree” of the curves at all, they are only called “spherical Bézier
curves”.

def de_casteljau(q0, qi, g2, g3, t):
slerp_0_1 = slerp(q0, gqi, t)
slerp_1_2 = slerp(ql, g2, t)
slerp_2_3 = slerp(q2, g3, t)
return slerp(

slerp(slerp_0_1, slerp_1_2, t),
slerp(slerp_1_2, slerp_2_3, t),
t,

q0 = angles2quat (45, 0, 0)

ql = angles2quat(0, 0, 0)

g2 = angles2quat(-90, 90, -90)
g3 = angles2quat(-90, 0, 0)

times = np.linspace(0, 1, 100)

ani = animate_rotations(
[de_casteljau(q0, ql, g2, g3, t) for t in times],
figsize=(3, 2),

display_animation(ani, default_mode='once')

Animations can only be shown in HTML output, sorry!
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helper.py

[9]:

[10]:

[11]:

[12]:

[13]:

[14]:

[15]:

[16]:

[177:

[18]:

Arbitrary “Degree”

splines.quaternion.DeCasteljau (page 141) class

from splines.quaternion import DeCasteljau

s = DeCasteljau([

L
angles2quat (0, 0, 0),
angles2quat (90, 0, 0),
Je
[
angles2quat (90, 0, 0),
angles2quat (0, 0, 0),
angles2quat (0, 90, 0),
I
(
angles2quat (0, 90, 0),
angles2quat (0, 0, 0),
angles2quat (=90, 0, 0),
angles2quat (-90, 90, 0),
P

1, grid=[0, 1, 3, 6]1)
times = np.linspace(s.grid[0], s.grid[-1], 100)
ani = animate_rotations(s.evaluate(times), figsize=(3, 2))

display_animation(ani, default_mode='once')

Animations can only be shown in HTML output, sorry!

Constant Angular Speed

Is there a way to construct a curve parameterized by arc length? This would be very useful.

—[Sho85], section 6: “Questions”

from splines import ConstantSpeedAdapter

s1 = DeCasteljau([[
angles2quat (90, 0, 0),
angles2quat (0, -45, 90),
angles2quat (0, 0, 0),
angles2quat (180, 0, 180),
11

s2 = ConstantSpeedAdapter(sl)

ani = animate_rotations({
'non-constant speed': sl.evaluate(np.linspace(sl.grid[0], sl.grid[-1], 100)),
'constant speed': s2.evaluate(unp.linspace(s2.grid[0], s2.grid[-1], 100)),

}, figsize=(5, 2))

display_animation(ani, default_mode='reflect')
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[19]:

[20] :

[21]:

Animations can only be shown in HTML output, sorry!

Joining Curves

In section 4.2, [Sho85] provides two function definitions:

Double(p,q) =2(p-q)q—p
_ptq
lp+4ll

Bisect(p, q)

def double(p, q):

return 2 * p.dot(q) * q - p

def bisect(p, q):

return (p + q).normalize()

Given three successive key quaternions q,,_1, 4, and 4,41, these functions are used to compute appro-
priate control quaternions b, (controlling the incoming tangent of g,,) and a,, (controlling the outgoing
tangent of g,):

a, = Bisect(Double(q,,-1,9n), n+1)
b, = Double(ay, q,)

def shoemake_control_quaternions(q_1, g0, ql):

"""Shoemake's control quaternions.

Given three key quaternions, return the control quaternions
preceding and following the middle one.

i

a = bisect(double(q_1, q0), gqi)
b = double(a, q0).normalize()
return b, a

Normalization of b, is not explicitly mentioned in the paper, but even though the results have a length
very close to 1.0, we still have to call normalize() to turn the Quaternion (page 139) result into a
UnitQuaternion (page 139).

We create a helper function for building a spline, because we will re-use the same thing further below:

[22] : def create_closed_shoemake curve(rotations):

rotations = rotations + rotationsl[:2]

control_points = []

for q_1, g0, gl in zip(rotations, rotations[1:], rotations[2:]):
b, a = shoemake_control_quaternions(q_1, g0, ql)
control_points.extend([b, g0, q0, al)

control_points = control_points[-2:] + control_points[:-2]

segments = list(zip(x[iter(control_points)] * 4))

return DeCasteljau(segments)

We don’t want to worry about end conditions here, therefore we create a closed curve.

Let’s come up with some example rotations and see how Shoemake’s curve-joining method works.
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[23]: rotations = [
angles2quat (0, 0, 180),
angles2quat (0, 45, 90),
angles2quat (90, 45, 0),
angles2quat (90, 90, -90),
angles2quat (180, 0, -180),
angles2quat (-90, -45, 180),

[24]: s = create_closed_shoemake curve(rotations)
[25]: times = np.linspace(s.grid[0], s.grid[-1], 200)
[26]: ani = animate_rotations(s.evaluate(times), figsize=(3, 2))

[27]: display_animation(ani, default_mode='loop')

Animations can only be shown in HTML output, sorry!

This looks a bit wobbly, doesn’t it?

Joining Curves, Second Attempt

Since Shoemake’s idea doesn’t seem to work that well, ...
uniform Catmull-Rom-like quaternion splines (page 116)

splines.quaternion.CatmullRom (page 141)

[28]: from splines.quaternion import CatmullRom
[29]: cr = CatmullRom(rotations, endconditions='closed')

[30]: ani = animate_rotations({
"Shoemake's idea": s.evaluate(times),
'Catmull-Rom-like': cr.evaluate(times),
}, figsize=(5, 2))

[31]: display_animation(ani, default_mode='loop')

Animations can only be shown in HTML output, sorry!

The following section was generated from doc/rotation/catmull-rom-uniform.ipynb ................c i

2.3 Uniform Catmull-Rom-Like Quaternion Splines

see notebook about De Casteljau’s algorithm (with Slerp) (page 113)
notebook about Euclidean Catmull-Rom splines (page 54)

X=X (= x) (X X)X — X S

P = =

2 2 N 2 2
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[17:

[2]:

[3]:

[4]:

[5]:

[6]:

[7]:

[8]:

section about cubic Euclidean Bézier splines (page 46): division by 3

11\3
” (QOutzqinz)
11
23

Qi,tangent =
1 2
11 111N\ 2 11
((QOut23qm 23) qin23> = ((qin

exp (%%(ln(%n) + 1“(‘70ut)))

[any
Nl=
=

1 _
3qout

Nf—=

Gout

N
Nl
NI
QI
\/
N

where gi, = qiqi,l‘l and gout = %’H%’_l-

The first four options are quite certainly wrong (although not by much), so we are only looking at the
last two here:

def tangentl(qg_1, g0, ql):
gq_in = (q0 * g_1.inverse())**(1 / (2 * 3))
g_out = (ql * g0.inverse())**(1 / (2 * 3))
return ((g_out * gq_in.inverse())**(1 / 2) * g_in)**2

def tangent2(q_1, q0, ql):
g_in = g0 * g_1.inverse()
g_out = gl * g0.inverse()
return UnitQuaternion.exp_map((q_in.log map() + g_out.log map()) / (2 * 3))

import numpy as np

from splines.quaternion import DeCasteljau, UnitQuaternion, canonicalized

helper.py

from helper import angles2quat, animate_rotations, display_animation

def create_closed_curve(rotations, tangent_func):

rotations = list(canonicalized(rotations + rotations[:2]))

control_points = []

for q_1, g0, gl in zip(rotations, rotations[1:], rotations[2:]):
g_tangent = tangent_func(q_1, q0, ql)
control_points.extend([q_tangent.inverse() * g0, g0, g0, g_tangent * g0])

control_points = control_points[-2:] + control_points[:-2]

segments = list(zip(*[iter(control_points)] * 4))

return DeCasteljau(segments)

rotations = [
angles2quat (0, 0, 180),
angles2quat (0, 45, 90),
angles2quat (90, 45, 0),
angles2quat (90, 90, -90),
angles2quat (180, 0, -180),
angles2quat (=90, -45, 180),

sl = create_closed_curve(rotations, tangentl)
s2 = create_closed_curve(rotations, tangent2)
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helper.py

[9]:

[10]:

[11]:

[12]:
[12]:

[17:

times = np.linspace(0, len(rotations), 200, endpoint=False)

ani = animate_rotations({
"1': sl.evaluate(times),
'2': s2.evaluate(times),
}, figsize=(4, 2))

display_animation(ani, default_mode='loop')

Animations can only be shown in HTML output, sorry!

The results are very similar, but not quite identical:

max (max (map (abs, q.xyzw)) for q in (sl.evaluate(times) - s2.evaluate(times)))

0.0002228419691587824

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA doc/rotation/catmull-rom-uniform.ipynb ends here.

The following section was generated from doc/rotation/catmull-rom-non-uniform.ipynb

2.4 Non-Uniform Catmull-Rom-Like Rotation Splines

uniform case (page 116)

notebook about non-uniform (Euclidean) Catmull-Rom splines (page 72)

L Tiinl(tivr — ) + Tiou(ti — ti1)

i
tiv1 —tig
T — Xi — Xi—1
Yt
, Xip1 — X
Tiout =
PO i — t

“translated” to quaternions ...

Oiin(tip1 — 1) + Ojoue(ti — ti_1)

@ =
Z tiv1 —tig
- ln(qi,in)
Yt~
& _ ln(qi,out)
U i —

-1
Jiin = giqi—1
-1
Ji,out = qi+14i
factor of % because we are dealing with cubic splines

from splines.quaternion import UnitQuaternion
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[2]: def control_quaternionsi(gs, ts):

q_1, 90, q1 = gs

t 1, t0, tl = ts

g_in = g0 * g_1.inverse()

g_out = gl * q0.inverse()

w_in = g_in.log map() / (t0 - t_1)

w_out = gq_out.log map() / (t1 - tO)

wO = ((t1 - t0) * w_in + (tO - t_1) * w out) / (1 - t_1)

return [
UnitQuaternion.exp_map(-w0 * (tO - t_1) / 3) * qO,
UnitQuaternion.exp_map(wO * (t1 - t0) / 3) * qO,

similar, but not quite identical:

[3]: def control_quaternions2(qgs, ts):
q_1, 90, q1 = gs
t 1, t0, t1 = ts
g_in = (q0 * g_1.inverse())**((tl - t0) / (3 * (0 - t_1)))
g out = (ql * gO0.inverse())*x((t0 - t_1) / (3 * (t1 - t0)))
gq_tangent = ((g_out * g_in.inverse())*x(1 / 2) * q_in)**2
return [
(g_tangent**((t0 - t_1) / (t1 - t_1))).inverse() * g0,
q_tangent*x((tl1 - t0) / (t1 - t_1)) * qO,

[4]: import numpy as np

helper.py

[5]: from helper import angles2quat, animate_rotations, display_animation

splines.quaternion.DeCasteljau (page 141) class

[6]: from splines.quaternion import DeCasteljau, canonicalized

[7]: def create_closed_curve(rotations, grid, control_quaternion_func):
assert len(rotations) + 1 == len(grid)
rotations = rotations[-1:] + rotations + rotations[:2]
# Avoid angles of more than 180 degrees (including‘the added rotations):
rotations = list(canonicalized(rotations))
first_interval = grid[1] - grid[0]
last_interval = grid[-1] - grid[-2]
extended_grid = [grid[0] - last_interval] + list(grid) + [grid[-1] + first_intervall
control_points = []
for gs, ts in zip(
zip(rotations, rotations[1:], rotations[2:]),
zip(extended_grid, extended_grid[l:], extended_grid[2:])):
q_before, q_after = control_quaternion_func(gs, ts)
control_points.extend([q_before, gs[1], gsl[l], g after])
control _points = control_points[2:-2]
segments = list(zip(*[iter(control_points)] * 4))
return DeCasteljau(segments, grid)

[8]: rotations = [
angles2quat (0, 0, 180),
angles2quat (0, 45, 90),
angles2quat (90, 45, 0),
(continues on next page)
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helper.py

[9]:

[10]:

[11]:

[12]:

[13]:

[14]:

[15]:

[16]:
[16]:

[17]:

[18]:

[19]:

angles2quat (90, 90, -90),
angles2quat (180, 0, -180),
angles2quat (=90, -45, 180),

grid = np.array([0, 0.5, 2, 5, 6, 7, 10])

sl = create_closed_curve(rotations, grid, control_quaternionsl)
s2 = create_closed_curve(rotations, grid, control_quaternions2)
def evaluate(spline, frames=200):

(continued from previous page)

times = np.linspace(spline.grid[0], spline.grid[-1], frames, endpoint=False)

return spline.evaluate(times)

for comparison, Barry—Goldman (page 125)

from splines.quaternion import BarryGoldman
bg = BarryGoldman(rotations, grid)

ani = animate_rotations({
'"1': evaluate(sl),
'2': evaluate(s2),
'Barry-Goldman': evaluate(bg),
}, figsize=(6, 2))

display_animation(ani, default_mode='loop')

Animations can only be shown in HTML output, sorry!

max (max (map(abs, q.xyzw)) for q in (evaluate(sl) - evaluate(s2)))

0.01051294090598398

Parameterization
rotations = [
angles2quat (90, 0, -45),
angles2quat (179, 0, 0),
angles2quat (181, 0, 0),
angles2quat (270, 0, -45),
angles2quat (0, 90, 90),
]
uniform2 = create_closed_curve(rotations, range(len(rotations) + 1), control_quaternionsl)

chordal parameterization (page 58)

angles = np.array([
np.arccos(a.dot (b))
#np.arccos(a.dot (b)) * 2
#a.dot (b)
#(b * a.inverse()).angle
#(b - a).norm
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[19]:

[20] :

[21]:

[22] :

[23]:

[24] :

[25]:

[26]:

[27]:
[27]:

[28]:
[28]:

[29]:

[29]:

[17:

[2]:

(continued from previous page)

for a, b in zip(rotations, rotations[l:] + rotations[:1])])
angles

array([0.85136439, 0.01745329, 0.85136439, 1.29678212, 0.85888576€])
chordal_grid = np.concatenate([[0], np.cumsum(angles)])

chordal2 = create_closed_curve(rotations, chordal_grid, control_quaternionsl)

centripetal parameterization (page 59)

centripetal _grid = np.concatenate([[0], np.cumsum(np.sqrt(angles))])
centripetal2 = create_closed_curve(rotations, centripetal_grid, control_quaternionsl)

ani = animate_rotations({
'uniform': evaluate(uniform?2),
'chordal': evaluate(chordal?2),
'centripetal': evaluate(centripetal2),
}, figsize=(6, 2))

display_animation(ani, default_mode='loop')

Animations can only be shown in HTML output, sorry!

The other method is very similar:

uniforml = create_closed_curve(rotations, range(len(rotations) + 1), control_quaternions2)
chordall = create_closed_curve(rotations, chordal_grid, control_quaternions2)
centripetall = create_closed_curve(rotations, centripetal_grid, control_quaternions2)

max (max (map(abs, q.xyzw)) for q in (evaluate(uniforml) - evaluate(uniform2)))

0.0026683373798292997

max (max (map(abs, q.xyzw)) for q in (evaluate(chordall) - evaluate(chordal2)))

0.002259641902391918

max (max (map(abs, q.xyzw)) for q in (evaluate(centripetall) - evaluate(centripetal2)))

0.002486960572741559

.................................................................................. doc/rotation/catmull-rom-non-uniform.ipynb ends here.

The following section was generated from doc/rotation/kochanek-bartels.ipynb ........ ...

2.5 Kochanek-Bartels-like Rotation Splines

import numpy as np

helper.py

from helper import angles2quat, animate_rotations, display_animation

splines.quaternion.KochanekBartels (page 141)
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[3]: from splines.quaternion import KochanekBartels

[4]: rotations = [
angles2quat (0, 0, 0),
angles2quat (90, 0, 0),
angles2quat (90, 90, 0),
angles2quat (90, 90, 90),

Uniform Catmull-Rom

[5]: s = KochanekBartels(rotations)

[6]: times = np.linspace(s.grid[0], s.grid[-1], 100)

[7]: ani = animate_rotations(s.evaluate(times), figsize=(4, 3))

[8]: display_animation(ani, default_mode='reflect')

Animations can only be shown in HTML output, sorry!

Non-Uniform Catmull-Rom

[9]: grid = 0, 0.2, 0.9, 1.2

[10]: s = KochanekBartels(rotations, grid)

[11]: times = np.linspace(s.grid[0], s.grid[-1], 100)

[12]: ani = animate_rotations(s.evaluate(times), figsize=(4, 3))

[13]: display_animation(ani, default_mode='reflect')

Animations can only be shown in HTML output, sorry!

TCB

[14]: s = KochanekBartels(rotations, tcb=[0, 1, 1])

[15]: times = np.linspace(s.grid[0], s.grid[-1], 100)

[16]: ani = animate_rotations(s.evaluate(times), figsize=(4, 3))

[17]: display_animation(ani, default_mode='reflect')

Animations can only be shown in HTML output, sorry!
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Edge Cases

® o or 1 quaternions: not allowed
* 2 quaternions: Slerp

¢ 180° rotations (dot product = 0)?
o ..
2 quaternions:
[18]: rotations = [

angles2quat (0, 0, 0),
angles2quat (90, 90, 90),

[19]: s = KochanekBartels(rotations)
[20]: times = np.linspace(s.grid[0], s.grid[-1], 100)
[21]: ani = animate_rotations(s.evaluate(times), figsize=(4, 3))

[22]: display_animation(ani, default_mode='reflect')

Animations can only be shown in HTML output, sorry!

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA doc/rotation/kochanek-bartels. ipynb ends here.

The following section was generated from doc/rotation/end-conditions-natural.ipynb ............cooiiiiiiiiiiiiiiiiiiiiiiiiinan...
2.6 “Natural” End Conditions
notebook about “natural” end conditions for Euclidean splines (page 104)

[1]: import numpy as np

helper.py

[2]: from helper import angles2quat, animate_rotations, display_animation

splines.quaternion.DeCasteljau (page 141)

[3]: from splines.quaternion import DeCasteljau

[4]: def calculate_rotations(control_quaternions):
times = np.linspace(0, 1, 50)
return DeCasteljau(
segments=[control_quaternions],
) .evaluate(times)

[5]: g0
ql

angles2quat (45, 0, 0)
angles2quat (-45, 0, 0)
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[6]:

[71:

[8]:

[9]:

[10]:

[11]:

[12]:

[13]:

[14]:

Begin

def natural_begin(begin, end_control, end):
"""Return second control quaternion given the other three.
return (
(end_control * end.inverse()) *
(end * begin.inverse())
Y*#x(1 / 2) * begin

i

ql_control = angles2quat(-45, 0, -90)

ani = animate_rotations({
'natural begin': calculate_rotations (
[q0, natural_begin(q0, gql_control, ql), gl_control, gil),
}, figsize=(4, 3))

display_animation(ani, default_mode='reflect')

Animations can only be shown in HTML output, sorry!

End

def natural_end(begin, begin_control, end):
"""Return third control quaternion given the other three."""
return (
end.inverse() *
(
(end * begin.inverse()) *
(begin * begin_control.inverse())
Y#x(1 / 2)).inverse()

q0_control = angles2quat(45, 0, 90)

ani = animate_rotations({
'natural end': calculate_rotations(
[q0, qO_control, natural_end(q0, gqO0_control, ql), qil),
}, figsize=(4, 3))

display_animation(ani, default_mode='reflect')

Animations can only be shown in HTML output, sorry!

(Non-)Symmetries

Instead of using the function for the begin condition, we could of course also reverse the control
quaternions, use the function for the end condition and time-reverse the result. And vice-versa.

Let’s make sure that works:

ani = animate rotations({
'natural end': calculate_rotations(
[q0, qO_control, natural_end(q0, qO0_control, ql), qil),
'natural begin, time-reversed': calculate_rotations(
[q1, natural_begin(ql, qO0_control, q0), qO_control, q0]) [::-1],
}, figsize=(6, 3))
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[15]:

[16]:

[177:

[18]:

[19]:

[20] :

[21]:

[]1:

[17:

[2]:

display_animation(ani, default_mode='reflect')

Animations can only be shown in HTML output, sorry!

begin = natural_begin(q0, ql_control, qil)

ani = animate_rotations({
'natural begin': calculate_rotations(
[q0, begin, ql_control, gil),
'natural end from natural begin': calculate_rotations(
[q0, begin, natural_end(q0, begin, ql), gil),
}, figsize=(6, 3))

display_animation(ani, default_mode='reflect')

Animations can only be shown in HTML output, sorry!

end = natural_end(q0, qO_control, ql)

ani = animate_rotations({
'natural end': calculate_rotations(
[q0, qO_control, end, qil),
'natural begin from natural end': calculate_rotations(
[q0, natural_begin(q0, end, ql), end, qll),
}, figsize=(6, 3))

display_animation(ani, default_mode='reflect')

Animations can only be shown in HTML output, sorry!

The following section was generated from doc/rotation/barry-goldman.ipynb ...........oouuiiiiiiiiiiii i

2.7 Barry-Goldman Algorithm

We can try to use the Barry-Goldman algorithm for non-uniform Euclidean Catmull-Rom splines (page 74)
using Slerp (page 109) instead of linear interpolations, just as we have done with De Casteljau’s algorithm

(page 113).

def slerp(one, two, t):
return (two * one.inverse())**t * one

def barry_goldman(rotations, times, t):
q0, ql, 92, g3 = rotations
t0, tl, t2, t3 = times
return slerp(
slerp(
slerp(q0, q1, (t - t0) / (t1
slerp(ql, g2, (t - t1)
(t - t0) / (£2 - t0)),
slerp(
slerp(ql, g2, (t - t1) / (t2 - t1)),
slerp(q2, g3, (t - t2) / (3 - t2)),
(t - t1) / (£3 - t1)),
(t - t1) / (£2 - t1))

£t0)),
t1)),

~

~

t

[\
|
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Example:

[3]: import numpy as np

helper.py

[4]: from helper import angles2quat, animate_rotations, display_animation

[5]: g0 = angles2quat(0, O, 0)
ql = angles2quat(90, 0, 0)
q2 = angles2quat(90, 90, 0)
g3 = angles2quat (90, 90, 90)

[6]: t0 =0
tl =1
t2 = 3
t3 = 3.5

[7]: frames = 50

[8]: ani = animate _rotations({
'Barry-Goldman (g0, ql, g2, g3)': [
barry_goldman([q0, ql, g2, g3], [tO, t1, t2, t3], t)
for t in np.linspace(tl, t2, frames)

] 2
'Slerp (g1, g2)': slerp(ql, g2, np.linspace(0, 1, frames)),
}, figsize=(6, 2))

[9]: display_animation(ani, default_mode='once')
Animations can only be shown in HTML output, sorry!
splines.quaternion.BarryGoldman (page 142) class

[10]: from splines.quaternion import BarryGoldman
[11]: import numpy as np

helper.py
[12]: from helper import angles2quat, animate_rotations, display_animation
[13]: rotations = [
angles2quat (0, 0, 180),
angles2quat (0, 45, 90),
angles2quat (90, 45, 0),
angles2quat (90, 90, -90),

angles2quat (180, 0, -180),
angles2quat (=90, -45, 180),

[14]: grid = np.array([0, 0.5, 2, 5, 6, 7, 9])
[15]: bg = BarryGoldman(rotations, grid)

For comparison ... Catmull-Rom-like quaternion spline (page 118)

splines.quaternion.CatmullRom (page 141) class
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[16]: from splines.quaternion import CatmullRom

[17]: cr = CatmullRom(rotations, grid, endconditions='closed')

[18]: def evaluate(spline, samples=200):
times = np.linspace(spline.grid[0], spline.grid[-1], samples, endpoint=False)
return spline.evaluate(times)

[19]: ani = animate rotations({
'Barry-Goldman': evaluate(bg),
'Catmull-Rom-like': evaluate(cr),

}, figsize=(4, 2))

[20] : display_animation(ani, default_mode='loop')

Animations can only be shown in HTML output, sorry!

[21]: rotations = [
angles2quat (90, 0, -45),
angles2quat (179, 0, 0),
angles2quat (181, 0, 0),
angles2quat (270, 0, -45),
angles2quat (0, 90, 90),

[22]: s_uniform = BarryGoldman(rotations)
s_chordal = BarryGoldman(rotations, alpha=1)
s_centripetal = BarryGoldman(rotations, alpha=0.5)

[23]: ani = animate_rotations({
'uniform': evaluate(s_uniform, samples=300),
'chordal': evaluate(s_chordal, samples=300),
'centripetal': evaluate(s_centripetal, samples=300),
}, figsize=(6, 2))

[24]: display_animation(ani, default_mode='loop')

Animations can only be shown in HTML output, sorry!

Constant Angular Speed

Not very efficient, De Casteljau’s algorithm is faster because it directly provides the tangent.

[256]: from splines import ConstantSpeedAdapter

[26] : class BarryGoldmanWithDerivative (BarryGoldman) :
delta_t = 0.000001

def evaluate(self, t, n=0):
"""Evaluate quaternion or angular velocity."""
if not np.isscalar(t):
return np.array([self.evaluate(t, n) for t in t])
if n ==
return super () .evaluate(t)

(continues on next page)
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(continued from previous page)

elif n ==
# NB: We move the interval around because
# we cannot access times before and after
# the first and last time, respectively.

fraction = (t - self.grid[0]) / (self.grid[-1] - self.grid[0])

before = super().evaluate(t - fraction * self.delta_t)

after = super().evaluate(t + (1 - fraction) * self.delta_t)

# NB: Double angle

return (after * before.inverse()).log map() * 2 / self.delta_t
else:

raise ValueError('Unsupported n: {!/r}'.format(n))

[27]: s = ConstantSpeedAdapter (BarryGoldmanWithDerivative(rotations, alpha=0.5))

Takes a long time!

[28]: ani = animate_rotations({
'non-constant speed': evaluate(s_centripetal),
'constant speed': evaluate(s),
}, figsize=(4, 2))

[29]: display_animation(ani, default_mode='loop')

Animations can only be shown in HTML output, sorry!

The following section was generated from doc/rotation/cumulative—form.ipynb ............oiiiiiiiii i

2.8 Cumulative Form

The basic idea, as proposed by [KKSg5] (section 4) is the following:

Instead of representing a curve as a sum of basis functions weighted by its control point’s position
vectors p; (as it’s for example done with Bézier splines (page 38)), they suggest to use the relative
difference vectors Ap; between successive control points.

These relative difference vectors can then be “translated” to local rotations (replacing additions with
multiplications), leading to a form of rotation splines.

Piecewise Slerp

As an example, they define a piecewise linear curve

where
Api = pi — pi—1
0 t<i—1
wi()=<Kt—i+1 i—-1<t<i
1 >
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[1]:

[2]:

[3]:

[47]:

[5]:

[6]:

[771:

def alpha(i, t):
if t < i - 1:
return O
elif t >= i:
return 1
else:
return t - 1 + 1

Note

There is an off-by-one error in the paper’s definition of «;(f):

0 t<i
ai(f)=<qt—i i<t<i+1
1 t>i+1.

This assumes that i starts with 0, but it actually starts with 1.

This “cumulative form” can be “translated” to a rotation spline by replacing addition with multipli-
cation and the relative difference vectors by relative (i.e. local) rotations (represented by unit quater-
nions):

n
q(t) = qo | [exp(wiai(t)),
=1
where
w; = log (‘7{1‘7:’) .

The paper uses above notation, but this could equivalently be written as

s a;(t)
at) =ao[ [ (a:40:) -
i=1

import numpy as np

helper.py

from helper import angles2quat, animate_rotations, display_animation
from splines.quaternion import UnitQuaternion

# NB: math.prod() since Python 3.8
product = np.multiply.reduce

def piecewise_slerp(gs, t):
return gs[0] * product([
(gsli - 1].inverse() * gs[i])**alpha(i, t)
for i in range(1l, len(gs))])

gs = [
angles2quat (0, 0, 0),
angles2quat (90, 0, 0),
angles2quat (90, 90, 0),
angles2quat (90, 90, 90),
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helper.py

[8]: times = np.linspace(0, len(gs) - 1, 100)
[9]: ani = animate_rotations([piecewise_slerp(gs, t) for t in times], figsize=(4, 3))

[10]: display_animation(ani, default_mode='reflect')

Animations can only be shown in HTML output, sorry!

Cumulative Bézier/Bernstein Curve

After the piecewise Slerp, [KKSg5] show (in section 5.1) how to create a cumulative form inspired by
Bézier splines, i.e. using Bernstein polynomials.

They start with the well-known equation for Bézier splines:
n
p(t) =Y piPin(t),
i=0

where B; ,(t) are Bernstein basis functions as shown in the notebook about Bézier splines (page 52).

They re-formulate this into a cumulative form:

n
p(t) = poPon(t) + ) ApiBin(t),
i=1
where the cumulative Bernstein basis functions are given by
B n
ﬁi,n (t) = Zﬁj,n (t)
j=i
We can get the Bernstein basis polynomials via the function splines.Bernstein.basis() (page 136):

[11]: from splines import Bernstein

. and create a simple helper function to sum them up:

[12]: from itertools import accumulate

[13]: def cumulative_bases(degree, t):
return list(accumulate(Bernstein.basis(degree, t)[::-1]1))[::-1]

Finally, they “translate” this into a rotation spline using quaternions, like before:

q(t) = QOﬁEXP (wiBin(t)),

where
w; = log(q; 4 qi).

Again, they use above notation in the paper, but this could equivalently be written as

q(t) = qolﬁ (q,illqi)'gi’"(t) :
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[14]: def cumulative_bezier(qgs, t):
degree = len(gs) - 1
bases = cumulative_bases(degree, t)
assert np.isclose(bases[0], 1)
return gs[0] * product([
(gs[i - 1].inverse() * gs[i])**bases[i]
for i in range(l, len(gs))

D
[15]: times = np.linspace(0, 1, 100)
[16]: rotations = [cumulative_bezier(qs, t) for t in times]
[17]: ani = animate_rotations(rotations, figsize=(4, 3))

[18]: display_animation(ani, default_mode='reflect')

Animations can only be shown in HTML output, sorry!

Comparison with De Casteljau’s Algorithm

This Bézier quaternion curve has a different shape from the Bézier quaternion curve of
[Sho8s5].

—[KKSg5], section 5.1

The method described by [Sho85] is shown in a separate notebook (page 113). An implementation is
available in the splines.quaternion.DeCasteljau (page 141) class:

[19]: from splines.quaternion import DeCasteljau
[20]: times = np.linspace(0, 1, 100)

[21]: control_polygon = [
angles2quat (90, 0, 0),
angles2quat (0, -45, 90),
angles2quat (0, 0, 0),
angles2quat (180, 0, 180),

[22]: cumulative rotations = [
cumulative_bezier(control_polygon, t)
for t in times

[23]: cumulative rotations reversed = [
cumulative_bezier(control_polygon[::-1], t)
for t in times

J [Cs8=ill
[24]: casteljau_rotations = DeCasteljau([control_polygon]) .evaluate(times)

[25]: ani = animate rotations({
'De Casteljau': casteljau_rotations,
'Cumulative': cumulative_rotations,

(continues on next page)
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[26]:

[27]:

[28]:

[1]:

(continued from previous page)

'Cumulative reversed': cumulative_rotations_reversed,
}, figsize=(9, 3))

display_animation(ani, default_mode='reflect')

Animations can only be shown in HTML output, sorry!

Applying the same method on the reversed list of control points and then time-reversing the resulting
sequence of rotations leads to an equal (except for rounding errors) sequence of rotations when using
De Casteljau’s algorithm:

casteljau_rotations_reversed = DeCasteljau([control_polygon[::-1]]).evaluate(times) [::-1]

for one, two in zip(casteljau_rotations, casteljau_rotations_reversed):
assert np.isclose(one.scalar, two.scalar)
assert np.isclose(one.vector[0], two.vector[0])
assert np.isclose(one.vector[1], two.vector[1])
assert np.isclose(one.vector[2], two.vector[2])

However, doing the same thing with the “cumulative form” can lead to a significantly different se-

quence, as can be seen in the above animation.
............................................................................................ doc/rotation/cumulative-form.ipynb ends here.

The following section was generated from doc/rotation/naive-4d-interpolation.ipynb ............ooiiiiiiiiiiiiiiiiiiiiiiiiinna ...

2.9 Naive 4D Quaternion Interpolation

This method for interpolating rotations is normally not recommended. But it might still be interesting
totry itout...

Since quaternions are a vector space (albeit a four-dimensional one), all methods for Euclidean splines
(page 2) can be applied. However, even though rotations can be represented by unit quaternions,
which are a subset of all quaternions, this subset is not a Euclidean space. All unit quaternions form
the unit hypersphere (which is obviously a curved space), and each point on this hypersphere uniquely
corresponds to a rotation.

When we convert our desired rotation “control points” to quaternions and naively interpolate in 4D
quaternion space, the interpolated quaternions are in general nof unit quaternions, i.e. they are not
part of the unit hypersphere and they don’t correspond to a rotation. In order to force them onto the
unit hypersphere, we can normalize them, though, which projects them onto the unit hypersphere.

Note that this is a very crude form of interpolation and it might result in unexpected curve shapes.
Especially the temporal behavior might be undesired.

If, for some application, more speed is essential, non-spherical quaternion splines will
undoubtedly be faster than angle interpolation, while still free of axis bias and gimbal lock.

—/[Sho85], section 5.4

Abandoning the unit sphere, one could work with the four-dimensional Euclidean space of
arbitrary quaternions. How do standard interpolation methods applied there behave when
mapped back to matrices? Note that we now have little guidance in picking the inverse
image for a matrix, and that cusp-free R* paths do not always project to cusp-free S3 paths.

—[Sho85], section 6

import numpy as np

As an example we use splines.CatmullRom (page 136) here, but any Euclidean spline could be used.
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[2]:

[3]:

[47:

[5]:

[6]:

[71:

[8]:

[9]:

[10]:

[11]:

[12]:

from splines import CatmullRom

from splines.quaternion import Quaternion

As always, we use a few helper functions from helper.py:

from helper import angles2quat, animate_rotations, display_animation

rotations = [
angles2quat (0, 0, 0),
angles2quat (45, 0, 0),
angles2quat (90, 45, 0),
angles2quat (90, 90, 0),
angles2quat (91, 91, 0),
angles2quat (180, 0, 90),

We use xyzw coordinate order here (because it is more common), but since the 4D coordinates are
independent, we could as well use wxyz order (or any order, for that matter) with identical results
(apart from rounding errors).

However, for illustrating the non-normalized case, we rely on the implicit conversion from xyzw coor-
dinates in the function animate_rotations().

rotations_xyzw = [q.xyzw for g in rotations]
s = CatmullRom(rotations_xyzw, endconditions='closed')

times = np.linspace(s.grid[0], s.grid[-1], 100)
interpolated_xyzw = s.evaluate(times)

normalized = [
Quaternion(w, (x, y, z)).normalize()
for x, y, z, w in interpolated_xyzw]

In case you are wondering what would happen if you forget to normalize the results, we also show
the non-normalized data:

ani = animate_ rotations({
'normalized': normalized,
'not normalized': interpolated_xyzw,
}, figsize=(6, 3))
display_animation(ani, default_mode='loop')

Animations can only be shown in HTML output, sorry!

Obviously, the non-normalized values are not pure rotations.
To get a different temporal behavior, let’s try using centripetal parameterization (page 59).

Note that this guarantees the absence of cusps and self-intersections in the 4D curve, but this guarantee
doesn’t extend to the projection onto the unit hypersphere.

s2 = CatmullRom(rotations_xyzw, alpha=0.5, endconditions='closed')

times2 = np.linspace(s2.grid[0], s2.grid[-1], len(times))
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[13]:

[14] :

[15]:

[16]:

[171:

[18]:

normalized2 = [
Quaternion(w, (x, y, z)).normalize()
for x, y, z, w in s2.evaluate(times2)]

Let’s also try arc-length parameterization:

from splines import ConstantSpeedAdapter
s3 = ConstantSpeedAdapter (s2)
times3 = np.linspace(s3.grid[0], s3.grid[-1], len(times))

normalized3 = [
Quaternion(w, (x, y, z)).normalize()
for x, y, z, w in s3.evaluate(times3)]

ani = animate_rotations({

'uniform': normalized,

'centripetal': normalized2,

'arc-length parameterized': normalized3,
}, figsize=(9, 3))
display_animation(ani, default_mode='loop')

Animations can only be shown in HTML output, sorry!

The arc-length parameterized spline has a constant speed in 4D quaternion space, but that doesn’t

mean it has a constant angular speed!
................................................................................... doc/rotation/naive-4d-interpolation.ipynb ends here.

3 Python Module

splines (page 134) Piecewise polynomial curves (in Euclidean
space).
splines.quaternion (page 139) Quaternions and unit-quaternion splines.

3.1 splines

Piecewise polynomial curves (in Euclidean space).

Submodules

quaternion (page 139) Quaternions and unit-quaternion splines.

134


https://github.com/AudioSceneDescriptionFormat/splines/blob/8007a37/doc/rotation/naive-4d-interpolation.ipynb

Classes

Bernstein (page 135)(segments[, grid])

Piecewise Bézier curve using Bernstein basis.

CatmullRom (page 136)(vertices[, grid, alpha,
)

Catmull-Rom spline.

ConstantSpeedAdapter (page 138)(curve)

Re-parameterize a spline to have constant speed.

CubicHermite (page 136)(vertices, tangents|,
grid])

Cubic Hermite curve.

FiniteDifference (page 13y)(vertices[, grid,
alpha, ...])

Finite difference spline.

KochanekBartels (page 137)(vertices[, grid,
tcb, ...])

Kochanek-Bartels spline.

Monomial (page 135)(segments, grid)

Piecewise polynomial curve using monomial ba-
sis.

MonotoneCubiclD
**kwargs)

age 138)(values, *args,
(page 13 g

Monotone cubic curve.

Natural (page 137)(vertices|, grid, alpha, end-
conditions])

Natural spline.

NewGridAdapter (page 138)(curve[, new_grid])

Re-parameterize a spline with new grid values.

ShapePreservingCubiclD (page 137)(values]|,
grid, ...])

Shape-preserving cubic curve.

class splines.Monomial (segments, grid)
Bases: object'

Piecewise polynomial curve using monomial basis.

Arbitrary degree, arbitrary dimension.

n t—t k
pi(t) =) a rR— fort; <t <ty
=0 i+1 £

Similar to https://docs.scipy.org/doc/scipy/reference/generated /scipy.interpolate.PPoly.html,

which states:

“High-order polynomials in the power basis can be numerically unstable. Precision
problems can start to appear for orders larger than 20-30.”

Parameters

e segments — Sequence of polynomial segments. Each segment contains co-
efficients for the monomial basis (in order of decreasing degree). Different
segments can have different polynomial degree.

e grid — Sequence of parameter values corresponding to segment boundaries.

Must be strictly increasing.

evaluate (t, n=0)

Get value (or n-th derivative) at given parameter value(s).

class splines.Bernstein(segments, grid=None)
Bases: object®

Piecewise Bézier curve using Bernstein basis.

Parameters

7 https:/ /docs.python.org/3/library / functions.html#object
8 https:/ /docs.python.org/3/library/ functions.html#object
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* segments — Sequence of segments, each one consisting of multiple Bézier con-
trol points. Different segments can have different numbers of control points
(and therefore different polynomial degrees).

e grid (optional) — Sequence of parameter values corresponding to segment
boundaries. Must be strictly increasing. If not specified, a uniform grid is used

(0,1,2,3,...)

static basis(degree, t)
Bernstein basis polynomials of given degree, evaluated at t.

Returns a list of values corresponding to i =0, ..., n, given the degree 1, using the formula
batt) = ()=,

with the binomial coefficient (}) = (n”ii)!.

evaluate (f, n=0)
Get value at the given parameter value(s).

class splines.CubicHermite (vertices, tangents, grid=None)
Bases: splines.Monomial (page 135)

Cubic Hermite curve.
See Hermite Splines (page 12).
Parameters
* vertices — Sequence of vertices.

* tangents — Sequence of tangent vectors (two per segment, outgoing and in-
coming).

e grid (optional) — Sequence of parameter values. Must be strictly increasing.
If not specified, a uniform grid is used (o, 1, 2, 3, ...).

matrix = array([[ 2, -2, 1, 1], [-3, 3, -2, -1], [0, O, 1, O], [ 1, 0, O, 0]11)

class splines.CatmullRom (vertices, grid=None, *, alpha=None, endconditions="natural”)
Bases: splines.CubicHermite (page 136)

Catmull-Rom spline.

This class implements one specific member of the family of splines described in [CR74], which
is commonly known as Catmull-Rom spline: The cubic spline that can be constructed by linear
Lagrange interpolation (and extrapolation) followed by quadratic B-spline blending, or equiva-
lently, quadratic Lagrange interpolation followed by linear B-spline blending.

The implementation used in this class, however, does nothing of that sort. It simply calculates
the appropriate tangent vectors at the control points and instantiates a CubicHermite (page 136)
spline.

See Catmull--Rom Splines (page 52).
Parameters
* vertices — Sequence of vertices.

e grid (optional) — Sequence of parameter values. Must be strictly increasing.
If not specified, a uniform grid is used (o, 1, 2, 3, ...).

® alpha (optional) — TODO

* endconditions (optional) — Start/end conditions. Can be 'closed',
'natural' or pair of tangent vectors (a.k.a. “clamped”). If 'closed’, the first
vertex is re-used as last vertex and an additional grid time has to be specified.
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class splines.FiniteDifference (vertices, grid=None, *, alpha=None, endconditions="natural”)
Bases: splines.CatmullRom (page 136)

Finite difference spline.
Same parameters as CatmullRom (page 136).
See Finite Difference Splines (page 84).

class splines.KochanekBartels (vertices, grid=None, *, tcb=(o, o, o), alpha=None, endcondi-

tions="natural ")
Bases: splines.CubicHermite (page 136)

Kochanek-Bartels spline.
See Kochanek--Bartels Splines (page 90).
Parameters
* vertices — Sequence of vertices.

¢ grid (optional) — Sequence of parameter values. Must be strictly increasing.
If not specified, a uniform grid is used (o, 1, 2, 3, ...).

* tcb (optional) — Sequence of tension, continuity and bias triples. TCB values
can only be given for the interior vertices.

e alpha (optional) - TODO

e endconditions (optional) — Start/end conditions. Can be 'closed',
'natural' or pair of tangent vectors (a.k.a. “clamped”). If 'closed’, the first
vertex is re-used as last vertex and an additional grid time has to be specified.

class splines.Natural (vertices, grid=None, *, alpha=None, endconditions="natural”)
Bases: splines.CubicHermite (page 136)

Natural spline.
See Natural Splines (page 30).
Parameters
* vertices — Sequence of vertices.

e grid (optional) — Sequence of parameter values. Must be strictly increasing.
If not specified, a uniform grid is used (o, 1, 2, 3, ...).

e alpha (optional) - TODO

e endconditions (optional) — Start/end conditions. Can be 'closed',
'natural' or pair of tangent vectors (a.k.a. “clamped”). If 'closed’, the first
vertex is re-used as last vertex and an additional grid time has to be specified.

class splines.ShapePreservingCubici1D(values, grid=None, slopes=None, *, alpha=None,

closed=False)
Bases: splines.FiniteDifference (page 137)

Shape-preserving cubic curve.

Similar to scipy.interpolate.PchipInterpolator™.

This only works for one-dimensional values.

For undefined slopes, _calculate_tangent () is called on the base class.

If no slopes are given, the curve also preserves concavity/convexity, otherwise it only preserves
monotonicity and local extrema.

9 https:/ /docs.scipy.org/doc/scipy / reference/ generated /scipy.interpolate.PchipInterpolator.html#scipy.interpolate.
PchipInterpolator
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Parameters
* values — Sequence of values to be interpolated.

¢ grid (optional) — Sequence of parameter values. Must be strictly increasing.
If not specified, a uniform grid is used (o, 1, 2, 3, ...).

* slopes (optional) — Sequence of slopes or None if slope should be computed
from neighboring values.

class splines.MonotoneCubiclD (values, *args, **kwargs)
Bases: splines.ShapePreservingCubiclD (page 137)

Monotone cubic curve.
Specialization of ShapePreservingCubiclD (page 137).

get_time (value)
Get the time instance for the given value.

If the solution is not unique (i.e. non-monotonic or repeated values), None is returned.

class splines.ConstantSpeedAdapter (curve)
Bases: object®®

Re-parameterize a spline to have constant speed.

For splines in Euclidean space this amounts to arc-length parameterization.

However, this class is implemented in a way that also allows using rotation splines which will

be re-parameterized to have constant angular speed.

The parameter s represents the cumulative arc-length or the cumulative rotation angle, respec-

tively.
evaluate(s)

class splines.NewGridAdapter (curve, new_grid=1)
Bases: object?"

Re-parameterize a spline with new grid values.
Parameters
* curve — A spline.

* new_grid (optional) — If a single number is given, the new parameter will
range from o to that number. Otherwise, a sequence of numbers has to be
given, one for each grid value. Instead of a value, None can be specified to
choose a value automatically. The first and last value cannot be None.

evaluate (1)

20 https:/ /docs.python.org/3/library/functions.html#object
2! https:/ /docs.python.org/3/library / functions.html#object
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3.2 splines.quaternion

Quaternions and unit-quaternion splines.

Functions
canonicalized (page 140)(quaternions) Iterator adapter to ensure minimal angles be-
tween quaternions.
slerp (page 140)(one, two, t) Spherical linear interpolation.
Classes

BarryGoldman (page 142)(quaternions[, grid, Rotation spline using Barry-Goldman algo-

alpha]) rithm.

CatmullRom (page 141)(quaternions|[, grid, al- Catmull-Rom-like rotation spline.

pha, ...])

DeCasteljau (page 141)(segments[, grid]) Spline using De Casteljau’s algorithm with
slerp() (page 140).

KochanekBartels (page 141)(quaternions[, Kochanek-Bartels-like rotation spline.

grid, tcb, ...])

PiecewiseSlerp (page 140)(quaternions, *[, Piecewise Slerp.

grid, closed])

Quaternion (page 139)(scalar, vector) A very simple quaternion class.

UnitQuaternion (page 139)() Unit quaternion.

class splines.quaternion.Quaternion (scalar, vector)
Bases: object??

A very simple quaternion class.

This is the base class for the more relevant UnitQuaternion (page 139) class.
property scalar

property vector

conjugate ()

normalize ()

dot (other)
Dot product of two quaternions.

This is the 4-dimensional dot product, yielding a scalar result. This operation is commuta-
tive.

Note that this is different from the quaternion multiplication (q1 * g2), which produces
another quaternion (and is non-commutative).

property norm
property xyzw
property wxyz

class splines.quaternion.UnitQuaternion
Bases: splines.quaternion.Quaternion (page 139)

** https:/ /docs.python.org/3/library / functions.html#object
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Unit quaternion.

classmethod from_axis_angle (axis, angle)
Create a unit quaternion from a rotation axis and angle.

Parameters
® axis — Three-component rotation axis. This will be normalized.
* angle — Rotation angle in radians.

classmethod from_unit_xyzw (xyzw)
Create a unit quaternion from another unit quaternion.

Parameters xyzw — Components of a unit quaternion (scalar last). This will not be
normalized, it must already have unit length.

inverse ()
Multiplicative inverse.

For unit quaternions, this is the same as conjugate () (page 139).

classmethod exp_map (value)
Exponential map from R® to quaternions.

This is the inverse operation to 1og_map () (page 140).
Parameters
¢ value — Element of the tangent space at the quaternion identity.
* type — 3-tuple
Returns Corresponding unit quaternion.

log_map()
Logarithmic map from quaternions to R®.

Returns Corresponding vector in the tangent space at the quaternion identity.
property axis
property angle
rotate_vector (v)

splines.quaternion.slerp (one, two, t)
Spherical linear interpolation.

Parameters
* one — Start quaternion.
* two — End quaternion.
¢ t — Parameter value(s) between o and 1.

splines.quaternion. canonicalized (quaternions)
Iterator adapter to ensure minimal angles between quaternions.

class splines.quaternion.PiecewiseSlerp (quaternions, *, grid=None, closed=False)
Bases: object®

Piecewise Slerp.
Parameters

* quaternions - Sequence of quaternions to be interpolated.

23 https:/ /docs.python.org/3/library / functions.html#object
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e grid (optional) — Sequence of parameter values. Must be strictly increasing.
Must have the same length as quaternions, except when closed is True, where it
must be one element longer. If not specified, a uniform grid is used (o, 1, 2, 3,

o)
* closed (optional) - If True, the first quaternion is repeated at the end.

evaluate (t, n=0)

class splines.quaternion.DeCasteljau(segments, grid=None)
Bases: object?

Spline using De Casteljau’s algorithm with slerp() (page 140).
See the corresponding notebook (page 113) for details.
Parameters

* segments — Sequence of segments, each one consisting of multiple control
quaternions. Different segments can have different numbers of control points.

* grid (optional) — Sequence of parameter values corresponding to segment
boundaries. Must be strictly increasing. If not specified, a uniform grid is used
(0,1,2,3,...).

evaluate (t, n=0)
Get value or angular velocity at given parameter value(s).

Parameters
e t — Parameter value(s).

e n ({0, 1}, optional)— Use O for calculating the value (a quaternion), 1
for the angular velocity (a 3-element vector).

class splines.quaternion.KochanekBartels (quaternions, grid=None, *, tcb=(o, o, o), al-

pha=None, endconditions="natural")
Bases: splines.quaternion.DeCasteljau (page 141)

Kochanek—-Bartels-like rotation spline.
Parameters
* quaternions — Sequence of quaternions.

¢ grid (optional) — Sequence of parameter values. Must be strictly increasing.
If not specified, a uniform grid is used (o, 1, 2, 3, ...).

* tcb (optional) — Sequence of tension, continuity and bias triples. TCB values
can only be given for the interior quaternions. If only two quaternions are
given, TCB values are ignored.

® alpha (optional) — TODO

® endconditions (optional) — Start/end conditions. Can be 'closed',
'natural' or pair of tangent vectors (a.k.a. “clamped”).
TODO: clamped
If 'closed’, the first rotation is re-used as last rotation and an additional grid
time has to be specified.
class splines.quaternion.CatmullRom(quaternions, grid=None, *, alpha=None, endcondi-

tions="natural ")
Bases: splines.quaternion.KochanekBartels (page 141)

Catmull-Rom-like rotation spline.

24 https:/ /docs.python.org/3/library / functions.html#object
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This is just KochanekBartels (page 141) without TCB values.

class splines.quaternion.BarryGoldman (quaternions, grid=None, *, alpha=None)
Bases: object®

Rotation spline using Barry—Goldman algorithm.

Always closed (for now).

evaluate (¢)

4 External Resources

A Primer on Bézier Curves: https://pomax.github.io/bezierinfo/
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