
Splines in Euclidean Space and Beyond
Release 0.3.1

Matthias Geier

2023-06-25

Contents

1 Introduction 2

2 Polynomial Curves in Euclidean Space 3
2.1 Parametric Polynomial Curves . 3
2.2 Lagrange Interpolation . 6
2.3 Splines . 15
2.4 Hermite Splines . 18
2.5 Natural Splines . 36
2.6 Bézier Splines . 45
2.7 Quadrangle Interpolation . 61
2.8 Catmull–Rom Splines . 65
2.9 Kochanek–Bartels Splines . 98
2.10 End Conditions . 114
2.11 Piecewise Monotone Interpolation . 120
2.12 Re-Parameterization . 134

3 Rotation Splines 138
3.1 Quaternions . 138
3.2 Spherical Linear Interpolation (Slerp) . 144
3.3 De Casteljau’s Algorithm With Slerp . 150
3.4 Uniform Catmull–Rom-Like Quaternion Splines . 153
3.5 Non-Uniform Catmull–Rom-Like Rotation Splines . 159
3.6 Kochanek–Bartels-like Rotation Splines . 162
3.7 “Natural” End Conditions . 165
3.8 Barry–Goldman Algorithm With Slerp . 167
3.9 Spherical Quadrangle Interpolation (Squad) . 170
3.10 Cumulative Form . 174
3.11 Naive 4D Quaternion Interpolation . 178
3.12 Naive Interpolation of Euler Angles . 180

4 Python Module 182
4.1 splines . 182
4.2 splines.quaternion . 186

5 References 191

1

…with focus on univariate, non-uniformpiecewise cubic polynomial curves in one, two and three spatial
dimensions, as well as rotation splines.

Installation
python -m pip install splines

Online documentation
https://splines.readthedocs.io/

Documentation notebooks on Binder
https://mybinder.org/v2/gh/AudioSceneDescriptionFormat/splines/master labpath=
doc/index.ipynb

Source code repository (and issue tracker)
https://github.com/AudioSceneDescriptionFormat/splines

License
MIT – see the file LICENSE for details.

1 Introduction

This is the documentation for the splines1 module for Python. However, instead of a Python module
with a bit of documentation, this project is mostly documentation, with a bit of Python module at the
side. The goal is not so much to provide a turn-key software for using splines, but rather to provide the
background and mathematical derivations for fully understanding the presented types of splines and
their inter-relations. The Python module serves mostly for experimenting further with the presented
ideas and methods. Therefore, the implementation is not focused on efficiency.

The documentation consists of twomain parts. The first part (page 3) investigates some polynomial splines
in their natural habitat, the Euclidean space. In the unlikely case you are reading this and don’t know
what “spline” means, the first part also contains a definition of the term (page 15) and a description of
some of the common properties of splines. The second part (page 138) leaves the comfort zone of flat
space and tries to apply some of the approaches from the first part to the curved space of rotations.
The Python module is similarly split into two parts whose API documentation is available at splines
(page 182) and splines.quaternion (page 186), respectively.

This project was originally inspired by Millington [Mil09], who concisely lists the basis matrices (a.k.a.
characteristic matrices) of a few common types of splines and also provides matrices that can be used to
convert control points between those different types. However, the derivation of those matrices is not
shown. Furthermore, the paper only considers uniform curves, where all parameter intervals have a
size of 1. One goal of this documentation is to show the derivation of all equations and matrices. The
derivations often utilize SymPy2 to make them more reproducible and to ease further experimentation.
A special focus is put on non-uniform splines, which seem to have been neglected in some of the literature
and especially in some online resources.

Another focus is the speed along curves. In many applications only the shape (a.k.a. the image3) of a
curvematters. However, sometimes it is important how fast a point travels along a splinewhen changing
the parameter (which can be interpreted as time). The “timing” of a spline is not visible in a static line
plot (as is often used by default). That’s why most of the plots in the following sections will instead use
dots at regular parameter intervals, for example 15 dots per second. If a spline already has the desired
image but the wrong timing, this can be fixed by Re-Parameterization (page 134).

A non-goal of this Python module and its documentation is to cover all possible types of splines. Maybe
some additional types will be added in the future, but the list will always stay incomplete. One of the

1 https://pypi.org/project/splines/
2 https://www.sympy.org/
3 https://en.wikipedia.org/wiki/Image_(mathematics)

2

https://splines.readthedocs.io/
https://mybinder.org/v2/gh/AudioSceneDescriptionFormat/splines/master?labpath=doc/index.ipynb
https://mybinder.org/v2/gh/AudioSceneDescriptionFormat/splines/master?labpath=doc/index.ipynb
https://github.com/AudioSceneDescriptionFormat/splines
https://pypi.org/project/splines/
https://www.sympy.org/
https://en.wikipedia.org/wiki/Image_(mathematics)

most glaring omissions for noware B-splines4, which arementioned a few times but not properly derived
nor implemented. Another family of splines that is missing are rational splines, and therefore also their
most popular member NURBS5. Spline surfaces are not covered either.

2 Polynomial Curves in Euclidean Space

This section is mostly about different types of univariate non-rational polynomial splines in one-, two-
and three-dimensional Euclidean space – for an application in a four-dimensional space, see the section
about 4D quaternion interpolation (page 178).

But before diving into splines (page 15) – and before even defining what they are – we will discuss a
few basics about polynomial curves and a spline-less interpolation method called Lagrange interpolation
(page 6).

Many of the approaches shown in this section will later be adapted to the context of rotation splines
(page 138).

The following section was generated from doc/euclidean/polynomials.ipynb .

2.1 Parametric Polynomial Curves

The building blocks for polynomial splines are of course polynomials6.

But first things first, let’s import SymPy7 and a few helper functions from helper.py:

[1]: import sympy as sp
sp.init_printing(order= grevlex)
from helper import plot_basis, plot_sympy, grid_lines, plot_spline_2d

We are mostly interested in univariate splines, i.e. curves with one free parameter, which are built using
polynomials with a single parameter. Here we are calling this parameter t. You can think about it as
time (e.g. in seconds), but it doesn’t have to represent time.

[2]: t = sp.symbols(t)

Polynomials typically consist of multiple terms. Each term contains a basis function, which itself contains
one or more integer powers of t. The highest power of all terms is called the degree of the polynomial.

The arguably simplest set of basis functions is themonomial basis, a.k.a. power basis, which simply consists
of all powers of t up to the given degree:

[3]: b_monomial = sp.Matrix([t**3, t**2, t, 1]).T
b_monomial

[3]:
[
t3 t2 t 1

]
In this example we are creating polynomials of degree 3, which are also called cubic polynomials.

The ordering of the basis functions is purely a matter of convention, here we are sorting them in order
of descending powers.

These basis functions are multiplied by (constant) coefficients. We are writing the coefficients with bold
symbols, because apart from simple scalars (for one-dimensional functions), these symbols can also
represent vectors in two- or three-dimensional space (and even higher-dimensional spaces).

4 https://en.wikipedia.org/wiki/B-spline
5 https://en.wikipedia.org/wiki/Non-uniform_rational_B-spline
6 https://en.wikipedia.org/wiki/Polynomial
7 https://www.sympy.org/

3

https://en.wikipedia.org/wiki/B-spline
https://en.wikipedia.org/wiki/Non-uniform_rational_B-spline
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/euclidean/polynomials.ipynb
https://en.wikipedia.org/wiki/Polynomial
https://www.sympy.org/
helper.py

[4]: coefficients = sp.Matrix(sp.symbols(a:dbm)[::-1])
coefficients

[4]:

d
c
b
a

We can create a polynomial by multiplying the basis functions with the coefficients and then adding all
terms:

[5]: b_monomial.dot(coefficients)

[5]: dt3 + ct2 + bt + a

This is a cubic polynomial in its canonical form (because it uses monomial basis functions).

Let’s take a closer look at those basis functions:

[6]: plot_basis(*b_monomial)

0 1t

0

1

we
ig

ht

t3

t2

t
1

It doesn’t look like much, but every conceivable cubic polynomial can be expressed as exactly one linear
combination of those basis functions (i.e. using one specific list of coefficients).

An example polynomial that’s not in canonical form …

[7]: example_polynomial = (2 * t - 1)**3 + (t + 1)**2 - 6 * t + 1
example_polynomial

[7]: (2t− 1)3 + (t + 1)2 − 6t + 1

[8]: plot_sympy(example_polynomial, (t, 0, 1))
grid_lines([0, 1], [0, 0.5, 1])

4

0 1

0.0

0.5

1.0

… can simply be re-written with monomial basis functions:

[9]: example_polynomial.expand()

[9]: 8t3 − 11t2 + 2t + 1

Any polynomial can be rewritten using any set of basis functions (as long as the degree of the basis
function set matches the degree of the polynomial).

In later sections we will see more basis functions, for example those that are used for Hermite (page 21),
Bézier (page 46) and Catmull–Rom (page 74) splines. In those sections we will also see how to convert
between different bases by means of matrix multiplication.

In the previous example, we used scalar coefficients to create a one-dimensional polynomial. We can
use two-dimensional coefficients to create two-dimensional polynomial curves. Let’s create a little class
to try this:

[10]: import numpy as np

class CubicPolynomial:

grid = 0, 1

def __init__(self, d, c, b, a):
self.coeffs = d, c, b, a

def evaluate(self, t):
t = np.expand_dims(t, -1)
return t**[3, 2, 1, 0] @ self.coeffs

Note

The @ operator is used here to do NumPy’s matrix multiplication8.

[11]: poly_2d = CubicPolynomial([-1.5, 5], [1.5, -8.5], [1, 4], [3, 2])

Since this class has the same interface as the splines that will be discussed in later sections, we can use
a spline helper function for plotting:

8 https://numpy.org/doc/stable/reference/generated/numpy.matmul.html

5

https://numpy.org/doc/stable/reference/generated/numpy.matmul.html

[12]: plot_spline_2d(poly_2d, dots_per_second=30, chords=False)

3.0 3.2 3.4 3.6 3.8 4.0
2.0

2.1

2.2

2.3

2.4

2.5

2.6

This class can also be used with three and more dimensions. The class splines.Monomial (page 182) can
be used to try this with arbitrary polynomial degree.
. doc/euclidean/polynomials.ipynb ends here.

The following section was generated from doc/euclidean/lagrange.ipynb .

2.2 Lagrange Interpolation

Before diving into splines, let’s have a look at an arguably simpler interpolation method using polyno-
mials: Lagrange interpolation9.

This is easy to implement, but as we will see, it has quite severe limitations, which will motivate us to
look into splines later.

[1]: import matplotlib.pyplot as plt
import numpy as np

One-dimensional Example

Assume we have N time instants ti, with 0 ≤ i < N …

[2]: ts = -1.5, 0.5, 1.7, 3.5, 4

… and for each time instant we are given an associated value xi:

[3]: xs = 2, -1, 1.3, 3.14, 1

Our task is now to find a function that yields the given xi values for the given times ti and some “rea-
sonable” interpolated values when evaluated at time values in between.

The idea of Lagrange interpolation is to create a separate polynomial `i(t) for each of the N given time
instants, which will be weighted by the associated xi. The final interpolation function is the weighted
sum of these N polynomials:

L(t) =
N−1

∑
i=0

xi`i(t)

9 https://en.wikipedia.org/wiki/Lagrange_polynomial

6

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/euclidean/polynomials.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/euclidean/lagrange.ipynb
https://en.wikipedia.org/wiki/Lagrange_polynomial

In order for this to actually work, the polynomials must fulfill the following requirements:

• Each polynomial must yield 1 when evaluated at its associated time ti.

• Each polynomial must yield 0 at all other instances in the set of given times.

To satisfy the second point, let’s create a product with a term for each of the relevant times and make
each of those factors vanish when evaluated at their associated time. For example, let’s look at the basis
for i = 3:

[4]: def maybe_polynomial_3(t):
t = np.asarray(t)
return (

(t - (-1.5)) *
(t - 0.5) *
(t - 1.7) *
(t - 4))

[5]: maybe_polynomial_3(ts)

[5]: array([-0. , 0. , -0. , -13.5, 0.])

As we can see, this indeed fulfills the second requirement. Note that we were given 5 time instants, but
we only need 4 product terms (corresponding to the 4 roots of the polynomial).

Now, for the first requirement, we can divide each term to yield 1 when evaluated at t = t3 = 3.5 (luckily,
this will not violate the second requirement). If each term is 1, the whole product will also be 1:

[6]: def polynomial_3(t):
t = np.asarray(t)
return (

(t - (-1.5)) / (3.5 - (-1.5)) *
(t - 0.5) / (3.5 - 0.5) *
(t - 1.7) / (3.5 - 1.7) *
(t - 4) / (3.5 - 4))

[7]: polynomial_3(ts)

[7]: array([0., -0., 0., 1., -0.])

That’s it!

To get a better idea what’s going on between the given time instances ti, let’s plot this polynomial (with
a little help from helper.py):

[8]: from helper import grid_lines

[9]: plot_times = np.linspace(ts[0], ts[-1], 100)

[10]: plt.plot(plot_times, polynomial_3(plot_times))
grid_lines(ts, [0, 1])

7

helper.py

1.5 0.5 1.7 3.5 4.0

0

1

We can see from its shape that this is a polynomial of degree 4, which makes sense because the product
we are using has 4 terms containing one t each. We can also see that it has the value 0 at each of the
initially provided time instances ti, except for t3 = 3.5, where it has the value 1.

The above calculation can be easily generalized to be able to get any one of the set of polynomials defined
by an arbitrary list of time instants:

[11]: def lagrange_polynomial(times, i, t):
"""i-th Lagrange polynomial for the given time values, evaluated at t."""
t = np.asarray(t)
product = np.multiply.reduce
return product([

(t - times[j]) / (times[i] - times[j])
for j in range(len(times))
if i != j

])

Putting this in mathematic notation, Lagrange basis polynomials can be written as

`i(t) =
N−1

∏
j=0
i 6=j

t− tj

ti − tj
.

Now we can calculate and visualize all 5 basis polynomials for our 5 given time instants:

[12]: polys = np.column_stack(
[lagrange_polynomial(ts, i, plot_times) for i in range(len(ts))])

[13]: plt.plot(plot_times, polys)
grid_lines(ts, [0, 1])

8

1.5 0.5 1.7 3.5 4.0

0

1

Finally, the interpolated values L(t) can be obtained by applying the given xi values as weights to the
polynomials `i(t) and summing everything up together:

[14]: weighted_polys = polys * xs

[15]: interpolated = np.sum(weighted_polys, axis=-1)

[16]: plt.plot(plot_times, weighted_polys)
plt.plot(plot_times, interpolated, color= black , linestyle= dashed)
plt.scatter(ts, xs, color= black)
grid_lines(ts)

1.5 0.5 1.7 3.5 4.0

1

0

1

2

3

9

Neville’s Algorithm

An alternative way to calculate interpolated values is Neville’s algorithm10. We mention this algorithm
mainly because it is referenced in the derivation of non-uniform Catmull–Rom splines (page 83) and the
description of the Barry–Goldman algorithm (page 89).

As main building block, we need a linear interpolation between two values in a given time interval:

[17]: def lerp(xs, ts, t):
"""Linear intERPolation.

Returns the interpolated value(s) at time(s) *t*,
given two values/vertices *xs* at times *ts*.

The two x-values can be scalars or vectors,
or even higher-dimensional arrays
(as long as the shape of *t* is compatible).

"""
x_begin, x_end = map(np.asarray, xs)
t_begin, t_end = ts
if not np.isscalar(t):

This allows using an array of *t* values:
t = np.expand_dims(t, axis=-1)

return (x_begin * (t_end - t) + x_end * (t - t_begin)) / (t_end - t_begin)

In each stage of the algorithm, linear interpolation is used to interpolate between adjacent values, leading
to one less value than in the stage before. The new values are used as input to the next stage and so on.
When there is only one value left, this value is the result.

The only tricky part is to choose the appropriate time interval for each interpolation. In the first stage,
the intervals between the given time values are used. In the second stage, each time interval is combined
with the following one, leading to one less time intervals in total. In the third stage, each time interval
is combined with the following two intervals, and so on until the last stage, where all time intervals are
combined into a single large interval.

Barry and Goldman [BG88] show (in figure 2) the cubic case, which looks something like this:

p0,1,2,3
t3−t
t3−t0

t−t0
t3−t0

p0,1,2 p1,2,3
t2−t
t2−t0

t−t0
t2−t0

t3−t
t3−t1

t−t1
t3−t1

p0,1 p1,2 p2,3
t1−t
t1−t0

t−t0
t1−t0

t2−t
t2−t1

t−t1
t2−t1

t3−t
t3−t2

t−t2
t3−t2

x0 x1 x2 x3

The polynomial p0,1,2,3(t) at the apex can be evaluated for t0 ≤ t ≤ t3. For a detailed explanation of this
triangular scheme, see the notebook about the Barry–Goldman algorithm (page 90). Neville’s algorithm can
be implemented for arbitrary degree:

[18]: def neville(xs, ts, t):
"""Lagrange interpolation using Neville s algorithm.

Returns the interpolated value(s) at time(s) *t*,
given the values *xs* at times *ts*.

(continues on next page)

10 https://en.wikipedia.org/wiki/Neville s_algorithm

10

https://en.wikipedia.org/wiki/Neville's_algorithm

(continued from previous page)

"""
if len(xs) != len(ts):

raise ValueError(xs and ts must have the same length)
while len(xs) > 1:

step = len(ts) - len(xs) + 1
xs = [

lerp(*args, t)
for args in zip(zip(xs, xs[1:]), zip(ts, ts[step:]))]

return xs[0]

[19]: plt.plot(plot_times, neville(xs, ts, plot_times))
plt.scatter(ts, xs)
grid_lines(ts)

1.5 0.5 1.7 3.5 4.0

1

0

1

2

3

Two-Dimensional Example

Lagrange interpolation can of course also be used in higher-dimensional spaces. To show this, let’s create
a little class:

[20]: class Lagrange:

def __init__(self, vertices, grid):
assert len(vertices) == len(grid)
self.vertices = vertices
self.grid = grid

def evaluate(self, t):
return neville(self.vertices, self.grid, t)

Since this class has the same interface as the splines that will be discussed in the following sections, we
can use a spline helper function from helper.py for plotting:

[21]: from helper import plot_spline_2d

This time, we have a list of two-dimensional vectors and the same list of associated times as before:

[22]: l1 = Lagrange([(2, -2), (-1, 0), (0.3, 0.5), (3.14, -1), (1, -1)], ts)

11

helper.py

[23]: plot_spline_2d(l1)

1 0 1 2 3 4
2.0

1.5

1.0

0.5

0.0

0.5

Runge’s Phenomenon

This seems to work to some degree, but as indicated above, Lagrange implementation has a severe lim-
itation. This limitation gets more apparent when using more vertices, which leads to a higher-degree
polynomial.

[24]: vertices1 = [
(-2, 3),
(1, 1),
(3, -1),
(2, -1),
(2.5, 1.5),
(5, 2),
(6, 1),
(5, 0),
(6.5, -1),
(7, 0),
(6, 3),

]

[25]: l2 = Lagrange(vertices1, range(len(vertices1)))
plot_spline_2d(l2)

12

2 0 2 4 6 8
2

1

0

1

2

3

Here we see a severe overshooting effect, most pronounced at the beginning and the end of the curve.
Moving some vertices canmake this even worse. This effect is called Runge’s phenomenon11. A possible
mitigation for this overshooting is to use so-called Chebyshev nodes12 as time instances:

[26]: def chebyshev_nodes(a, b, n):
k = np.arange(n) + 1
nodes = np.cos(np.pi * (2 * k - 1) / (2 * n))
return (a + b) / 2 - (b - a) * nodes / 2

[27]: l3 = Lagrange(vertices1, chebyshev_nodes(0, len(vertices1) - 1, len(vertices1)))
plot_spline_2d(l3)

2 0 2 4 6

1

0

1

2

3

This is definitely better. But it gets worse again when we move a few of the vertices.

[28]: vertices2 = [
(0, -1),
(1, 1),
(3, -1),
(2.5, 1.5),
(5, 2),

(continues on next page)

11 https://en.wikipedia.org/wiki/Runge s_phenomenon
12 https://en.wikipedia.org/wiki/Chebyshev_nodes

13

https://en.wikipedia.org/wiki/Runge's_phenomenon
https://en.wikipedia.org/wiki/Chebyshev_nodes

(continued from previous page)

(6, 0.5),
(6, 0),
(4, -1),
(6.5, -1),
(7, 2),
(8, 0),

]

[29]: l4 = Lagrange(vertices2, chebyshev_nodes(0, len(vertices2) - 1, len(vertices2)))
plot_spline_2d(l4)

0 1 2 3 4 5 6 7 8

1

0

1

2

Long story short, Lagrange interpolation is typically not suitable for drawing curves. For comparison,
and as a teaser for the following sections, let’s use the same vertices to create a uniform Catmull–Rom
spline (page 65):

[30]: import splines

[31]: cr_spline = splines.CatmullRom(vertices2)

[32]: plot_spline_2d(cr_spline)

0 1 2 3 4 5 6 7 8

1

0

1

2

And to get an even better fit, we can try a centripetal Catmull–Rom spline (page 73):

14

[33]: cr_centripetal_spline = splines.CatmullRom(vertices2, alpha=0.5)

[34]: plot_spline_2d(cr_centripetal_spline)

0 1 2 3 4 5 6 7 8

1

0

1

2

Note

The class splines.CatmullRom (page 184) uses “natural” end conditions (page 114) by default.

. doc/euclidean/lagrange.ipynb ends here.

2.3 Splines

The term spline for themathematical description of a smooth piecewise curvewas introduced by Schoen-
berg [Sch46], with reference to a drawing tool called spline13.

A spline is a simple mechanical device for drawing smooth curves. It is a slender flexible bar
made of wood or some other elastic material. The spline is place[d] on the sheet of graph
paper and held in place at various points by means of certain heavy objects (called “dogs”
or “rats”) such as to take the shape of the curve we wish to draw.

---Schoenberg [Sch46], page 67

The term is defined in the context of what is nowadays known as natural splines (page 36), especially
cubic natural splines (i.e. of degree 3; i.e. of order 4), which have C2 continuity.

For k = 4 they represent approximately the curves drawn by means of a spline and for this
reason we propose to call them spline curves of order k.

---Schoenberg [Sch46], page 48
13 https://en.wiktionary.org/wiki/spline

15

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/euclidean/lagrange.ipynb
https://en.wiktionary.org/wiki/spline

Definition

Different authors use different definitions for the term spline, here is ours: splines are composite paramet-
ric curves. Splines are typically used for defining curves in one-, two- or three-dimensional Euclidean
space. Such splines will be described in the following sections. Later, we will also have a look at rotation
splines (page 138).

Sometimes it is not obvious whether the term spline refers to the composite curve or to one of its seg-
ments, especially when talking about Bézier splines (page 45). In the rest of this text we are using the
term spline to refer to the entire composite curve.

Properties

Different types of splines have different properties. In the following, we list the most important proper-
ties, focusing on the types of splines that will be described in more detail in later sections.

piecewise
Arguably the most important property of splines is that they are composed of somewhat indepen-
dent pieces. This allows using simpler mathematical objects for the pieces, while still being able
to construct a more or less arbitrarily complicated composite curve. For example, as shown in the
previous section about Lagrange interpolation (page 6), using a curve with a high polynomial de-
gree can lead to unintended behavior like Runge’s phenomenon (page 12). This can be avoided by
using multiple polynomial pieces of lower degrees.

parametric
Here we are only talking about univariate curves, i.e. curves with one parameter, i.e. a single
real number, but similar approaches can be used to describe surfaces with two parameters. We
are normally using the symbol t for the free parameter. This parameter can often intuitively be
interpreted as time, but it doesn’t have to.

The individual segments of a spline are of course also parametric, and they may have their own
parameter ranges (often, but not necessarily, the so-called unit interval from 0 to 1), which have to
be calculated from the appropriate sub-range of the main spline parameter.

A spline can also be re-parameterized, see Re-Parameterization (page 134).

The sequence of parameter values at the start and end of segments is sometimes – e.g. by Gordon
and Riesenfeld [GR74] – called the knot vector. In the accompanying Python Module (page 182),
however, it is called grid.

non-uniform
The parameter range of a spline can be uniquely separated into the parameter ranges of its seg-
ments. If those sub-ranges all have the same length, the spline is called uniform.

When a uniform spline has curve segments of very different lengths, the speed along the curve
(assuming that the parameter t is interpreted as time) varies strongly. By using non-uniform pa-
rameter intervals, this can be avoided.

continuous
Splines are not necessarily continuous. The segments of a spline might be defined by discontinu-
ous functions, but for most practical applications it is more common to use continuous functions.
Often, some derivatives of these functions are continuous as well. If the spline segments are poly-
nomials, they are always continuous, and so are all their derivatives.

However, even if its segments are continuous, that doesn’t automatically mean that the whole
spline is continuous. The transitions between segments can still be discontinuous. But again, in
most practical applications the transitions are continuous. If that’s the case, the spline is said to
have C0 continuity. The spline is called C1 continuous if the first derivatives of the two neighboring
segments at each transition are equal and C2 continuous if also the second derivatives match.

16

control points
Splines are fully defined by the mathematical functions of their segments and the corresponding
parameter ranges. However, those functions (and their coefficients) have to be chosen somehow.
And that’s what differentiates different types of splines.

For some applications it is desired to specify a sequence of control points (sometimes also called
vertex/vertices) where the curve is supposed to pass through. Based on those points, the appro-
priate functions for the spline segments are constructed. The Catmull–Rom splines (page 65) and
natural splines (page 36) are examples where segments are derived from such a sequence of control
points.

Some splines, most notably Bézier splines (page 45), only pass through some of their control points
and the remaining control points affect the shape of the curve between those points.

The set of all control points, connected by straight lines, is sometimes called control polygon.

Some splines have a set of control points where they pass through and additional values that are
not points at all. We call them control values. For example, Hermite splines (page 18) pass through
a set of control points, but they need additional information about the tangent vectors (i.e. the
first derivatives) at the transitions between segments. For higher-order splines they also need the
second and higher derivatives.

interpolating
Splines are called interpolating if they pass through all of their aforementioned control points. If a
spline is not interpolating, it is called approximating.

Herewe are almost exclusively talking about interpolating splines. A notable special case areBézier
splines (page 45), which pass through a sequence of control points, but between each pair of those
interpolated control points there are d− 1 (where d is the degree) additional control points that
are only approximated by the curve (and they can be used to control the shape of the curve).

local control
For some types of splines, when changing a single control value, the shape of the whole curve
changes. These splines are said to have global control. For many applications, however, it is prefer-
able, when a control value is changed, that the shape of the curve only changes in the immediate
vicinity of that control value. This is called local control.

additional parameters
Some types of splines have additional parameters, either separately for each vertex, or the same
one(s) for all vertices. An example are Kochanek–Bartels splines (page 98) with their tension, conti-
nuity and bias parameters.

polynomial
The curve segments that make up a spline can have an arbitrary mathematical description. Very
often, polynomial curve segments are used, and that’s also what wewill be mostly using here. The
polynomials will be defined by their basis functions and corresponding coefficients, as described
in the notebook about polynomial parametric curves (page 3).

The following properties are only relevant for polynomial splines.

degree
The degree of a polynomial spline is the highest degree among its segments. Splines of degree
3, a.k.a. cubic splines, are very common for drawing smooth curves. Old-school references by
authors like de Boor [dB78] might use the term order, which is one more than the degree, which
means that cubic splines are of order 4. We will mostly consider cubic splines, but some of the
presented algorithms allow arbitrary degree, for example De Casteljau’s algorithm (page 46).

non-rational
The splines discussed here are defined by one polynomial per segment. However, there are also
splines whose segments are defined by ratios of polynomials instead. Those are called rational
splines. Rational splines are invariant under perspective transformations (non-rational splines are

17

only invariant under rotation/scale/translation), and they can precisely define conic sections (e.g.
circles). They are also the foundation for NURBS14.

Types

There are an infinite number of types of splines, only very fewofwhichwill be presented in the following
sections. Some of them can create the same curve from different control values, like Hermite splines
(page 18) and Bézier splines (page 45). Some create different curves from the same control values, like
Catmull–Rom splines (page 65) and natural splines (page 36). Some have additional parameters to control
the shape of the curve, like Kochanek–Bartels splines (page 98) with their TCB values.

Some spline types have certain constraints on the transitions between segments, for example, natural
splines require C2 continuity. Other splines have no such constraints, like for example Hermite splines,
which allow specifying arbitrary derivatives at their segment transitions.

Cubic splines cannot be interpolating and have C2 continuity and local control at the same time.

type local control continuity interpolating

Catmull–Rom splines (page 65) yes C1 yes
natural splines (page 36) no C2 yes
B-splines15 yes C2 no

Kochanek–Bartels splines with C = 0 are in the same category as Catmull–Rom splines (which are a
subset of former).

From any polynomial segment of a certain degree the control values according to any polynomial spline
type (of that same degree) can be computed and vice versa. This means that different types of poly-
nomial splines can be unambiguously (if using the same parameter intervals) converted between each
other as long as the target spline has the same or weaker constraints. For example, any natural spline can
be converted into its corresponding Bézier spline. The reverse is not true. Catmull–Rom splines and nat-
ural splines can generally not be converted between each other because they havemutually incompatible
constraints.

2.4 Hermite Splines

Hermite splines16 (named after Charles Hermite17) are the building blocks for many other types of in-
terpolating polynomial splines, for example natural splines (page 36) and Catmull–Rom splines (page 65).

A Python implementation of (cubic) Hermite splines is available in the splines.CubicHermite (page 183)
class.

The following section was generated from doc/euclidean/hermite-properties.ipynb .

Properties of Hermite Splines

Hermite splines are interpolating polynomial splines, where for each polynomial segment the desired
value at the start and end is given (obviously!), as well as the values of a certain number of derivatives
at the start and/or the end.

Most commonly, cubic (= degree 3) Hermite splines are used. Cubic polynomials have 4 coefficients to
be chosen freely, and those are determined for each segment of a cubic Hermite spline by providing 4

14 https://en.wikipedia.org/wiki/Non-uniform_rational_B-spline
15 https://en.wikipedia.org/wiki/B-spline
16 https://en.wikipedia.org/wiki/Cubic_Hermite_spline
17 https://en.wikipedia.org/wiki/Charles_Hermite

18

https://en.wikipedia.org/wiki/Non-uniform_rational_B-spline
https://en.wikipedia.org/wiki/B-spline
https://en.wikipedia.org/wiki/Cubic_Hermite_spline
https://en.wikipedia.org/wiki/Charles_Hermite
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/euclidean/hermite-properties.ipynb

pieces of information: the function value and the first derivative, both at the beginning and the end of
the segment.

Other degrees of Hermite splines are possible (but much rarer), for example quintic (= degree 5) Her-
mite splines, which are defined by the second derivatives at the start and end of each segment, on top
of the first derivatives and the function values (6 values in total).

Hermite splines with even degrees are probably still rarer. For example, quadratic (= degree 2) Hermite
splines can be constructed by providing the function values at both beginning and end of each segment,
but only one first derivative, either at the beginning or at the end (leading to 3 values in total). Make
sure not to confuse them with quartic (= degree 4) Hermite splines, which are defined by 5 values per
segment: function value and first derivative at both ends, and one of the second derivatives.

However, cubic Hermite splines are so overwhelmingly common that they are often simply referred to as
Hermite splines. From this point forward, we will only be considering cubic Hermite splines.

[1]: import splines

[2]: import matplotlib.pyplot as plt
import numpy as np

We import a few helper functions from helper.py:

[3]: from helper import plot_spline_1d, plot_slopes_1d, grid_lines
from helper import plot_spline_2d, plot_tangents_2d

Let’s look at a one-dimensional spline first. Here are some values (to be interpolated) and a list of
associated parameter values (or time instances, if you will).

[4]: values = 2, 4, 3, 3
grid = 5, 7, 8, 10

Since (cubic) Hermite splines ask for the first derivative at the beginning and end of each segment, we
have to come up with a list of slopes (outgoing, incoming, outgoing, incoming, …).

[5]: slopes = 0, 0, -1, 0.5, 1, 3

We are using the splines.CubicHermite (page 183) class to create the spline:

[6]: s1 = splines.CubicHermite(values, slopes, grid=grid)

OK, let’s plot this one-dimensional spline, together with the given values and slopes.

[7]: plot_spline_1d(s1)
plot_slopes_1d(slopes, values, grid)
grid_lines(grid)

19

helper.py

5 7 8 10
2.0

2.5

3.0

3.5

4.0

Let’s try a two-dimensional curve now (higher dimensions work similarly).

[8]: vertices = [
(0, 0),
(2, 0),
(1, 1),

]

The derivative of a curve is its tangent vector, so here is a list of associated tangent vectors (outgoing,
incoming, outgoing, incoming, …):

[9]: tangents = [
(2, 1),
(0.1, 0.1),
(-0.5, 1),
(1, 0),

]

[10]: s2 = splines.CubicHermite(vertices, tangents)

[11]: fig, ax = plt.subplots()
plot_spline_2d(s2, ax=ax)
plot_tangents_2d(tangents, vertices, ax=ax)

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

20

If no parameter values are given (by means of the grid argument), the splines.CubicHermite (page 183)
class creates a uniform spline, i.e. all parameter intervals are automatically chosen to be 1. We can create
a non-uniform spline by providing our own parameter values:

[12]: grid = 0, 0.5, 3

Using the same vertices and tangents, we can clearly see how the new parameter values influence the
shape and the speed of the curve (the dots are plotted at equal time intervals!):

[13]: s3 = splines.CubicHermite(vertices, tangents, grid=grid)

[14]: plot_spline_2d(s3, ax=ax)
fig

[14]:

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

Hermite splines are by default C0 continuous. If adjacent tangents are chosen to point into the same
direction, the spline becomes G1 continuous. If on top of having the same direction, adjacent tangents
are chosen to have the same length, that makes the spline C1 continuous. An example for that are
Catmull–Rom splines (page 65). Kochanek–Bartels splines (page 98) can also be C1 continuous, but only if
their “continuity” parameter C is zero.

There is one unique choice of all of a cubic Hermite spline’s tangents – given certain end conditions
(page 114) – that leads to continuous second derivatives at all vertices, making the spline C2 contin-
uous. This is what natural splines (page 36) are all about.
. doc/euclidean/hermite-properties.ipynb ends here.

The following section was generated from doc/euclidean/hermite-uniform.ipynb .

Uniform Cubic Hermite Splines

We derive the basis matrix as well as the basis polynomials for cubic (= degree 3) Hermite splines. The
derivation for other degrees is left as an exercise for the reader.

In this notebook, we consider uniform spline segments, i.e. the parameter in each segment varies from 0
to 1. The derivation for non-uniform cubic Hermite splines can be found in a separate notebook (page 30).

[1]: import sympy as sp
sp.init_printing(order= grevlex)

We load a few tools from utility.py:

[2]: from utility import NamedExpression, NamedMatrix

21

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/euclidean/hermite-properties.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/euclidean/hermite-uniform.ipynb
utility.py

[3]: t = sp.symbols(t)

We are considering a single cubic polynomial segment of a Hermite spline (which is sometimes called
a Ferguson cubic).

To simplify the indices in the following derivation, let’s look at only one specific polynomial segment,
let’s say the fifth one. It goes from x4 to x5 and it is referred to as p4(t), where 0 ≤ t ≤ 1. The results
will be easily generalizable to an arbitrary polynomial segment pi(t) from xi to xi+1, where 0 ≤ t ≤ 1.

The polynomial has 4 coefficients, a4 to d4.

[4]: coefficients = sp.Matrix(sp.symbols(a:dbm4)[::-1])
coefficients

[4]:

d4
c4
b4
a4

Combined with the monomial basis …

[5]: b_monomial = sp.Matrix([t**3, t**2, t, 1]).T
b_monomial

[5]:
[
t3 t2 t 1

]
… the coefficients form an expression for our polynomial segment p4(t):

[6]: p4 = NamedExpression(pbm4 , b_monomial.dot(coefficients))
p4

[6]: p4 = d4t3 + c4t2 + b4t + a4

For more information about polynomials, see Polynomial Parametric Curves (page 3).

Let’s also calculate the first derivative (a.k.a. velocity, a.k.a. tangent vector), while we are at it:

[7]: pd4 = p4.diff(t)
pd4

[7]: d
dt

p4 = 3d4t2 + 2c4t + b4

To generate a Hermite spline segment, we have to provide the value of the polynomial at the start and
end point of the segment (at times t = 0 and t = 1, respectively). We also have to provide the first
derivative at those same points.

x4 = p4|t=0

x5 = p4|t=1

ẋ4 =
d
dt

p4

∣∣∣∣
t=0

ẋ5 =
d
dt

p4

∣∣∣∣
t=1

We call those 4 values the control values of the segment.

Evaluating the polynomial and its derivative at times 0 and 1 leads to 4 expressions for our 4 control
values:

22

[8]: x4 = p4.evaluated_at(t, 0).with_name(xbm4)
x5 = p4.evaluated_at(t, 1).with_name(xbm5)
xd4 = pd4.evaluated_at(t, 0).with_name(xdotbm4)
xd5 = pd4.evaluated_at(t, 1).with_name(xdotbm5)

[9]: display(x4, x5, xd4, xd5)

x4 = a4

x5 = a4 + b4 + c4 + d4

ẋ4 = b4

ẋ5 = b4 + 2c4 + 3d4

Basis Matrix

Given an input vector of control values …

[10]: control_values_H = NamedMatrix(sp.Matrix([x4.name,
x5.name,
xd4.name,
xd5.name]))

control_values_H.name

[10]:

x4
x5
ẋ4
ẋ5

… we want to find a way to transform those into the coefficients of our cubic polynomial.

[11]: M_H = NamedMatrix(r {M_\text{H}} , 4, 4)

[12]: coefficients_H = NamedMatrix(coefficients, M_H.name * control_values_H.name)
coefficients_H

[12]:

d4
c4
b4
a4

 = MH

x4
x5
ẋ4
ẋ5

This way, we can express our previously unknown coefficients in terms of the given control values.

However, in order to make it easy to determine the coefficients of the basis matrix MH , we need the
equation the other way around (by left-multiplying by the inverse):

[13]: control_values_H.expr = M_H.name.I * coefficients
control_values_H

[13]:

x4
x5
ẋ4
ẋ5

 = MH
−1

d4
c4
b4
a4

We can now insert the expressions for the control values that we obtained above …

[14]: substitutions = x4, x5, xd4, xd5

23

[15]: control_values_H.subs_symbols(*substitutions)

[15]:

a4
a4 + b4 + c4 + d4

b4
b4 + 2c4 + 3d4

 = MH
−1

d4
c4
b4
a4

… and from this equation we can directly read off the matrix coefficients of MH

−1:

[16]: M_H.I = sp.Matrix(
[[expr.coeff(cv) for cv in coefficients]
for expr in control_values_H.subs_symbols(*substitutions).name])

M_H.I

[16]:

MH
−1 =

0 0 0 1
1 1 1 1
0 0 1 0
3 2 1 0

The same thing for copy & paste purposes:

[17]: print(_.expr)

Matrix([[0, 0, 0, 1], [1, 1, 1, 1], [0, 0, 1, 0], [3, 2, 1, 0]])

This transforms the coefficients of the polynomial into our control values, but we need it the other way
round, which we can simply get by inverting the matrix:

[18]: M_H

[18]:

MH =

2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0

Again, for copy & paste:

[19]: print(_.expr)

Matrix([[2, -2, 1, 1], [-3, 3, -2, -1], [0, 0, 1, 0], [1, 0, 0, 0]])

Now we have a new way to write the polynomial p4(t), given our four control values. We take those
control values, left-multiply them by the Hermite basis matrix MH (which gives us a column vector of
coefficients), which we can then left-multiply by the monomial basis:

[20]: sp.MatMul(b_monomial, M_H.expr, control_values_H.name)

[20]: [
t3 t2 t 1

]
2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0

x4
x5
ẋ4
ẋ5

24

Basis Polynomials

However, instead of calculating from right to left, we can also start at the left and multiply the mono-
mial basis with the Hermite basis matrix MH, which yields (a row vector containing) the Hermite basis
polynomials:

[21]: b_H = NamedMatrix(r {b_\text{H}} , b_monomial * M_H.expr)
b_H.factor().T

[21]:

bHT =

(t− 1)2 · (2t + 1)
−t2 · (2t− 3)

t (t− 1)2

t2 (t− 1)

The multiplication of this row vector with the column vector of control values again produces the poly-
nomial p4(t).

Let’s plot the basis polynomials with some help from helper.py:

[22]: from helper import plot_basis

[23]: plot_basis(*b_H.expr, labels=sp.symbols(xbm_i xbm_i+1 xdotbm_i xdotbm_i+1))

0 1t

0

1

we
ig

ht

xi

xi + 1
xi

xi + 1

Note that the basis function associated with xi has the value 1 at the beginning, while all others are 0 at
that point. For this reason, the linear combination of all basis functions at t = 0 simply adds up to the
value xi (which is exactly what we wanted to happen!).

Similarly, the basis function associated with ẋi has a first derivative of +1 at the beginning, while all
others have a first derivative of 0. Therefore, the linear combination of all basis functions at t = 0 turns
out to have a first derivative of ẋi (what a coincidence!).

While t progresses towards 1, both functions must relinquish their influence to the other two basis func-
tions.

At the end (when t = 1), the basis function associated with xi+1 is the only one that has a non-zero
value. More specifically, it has the value 1. Finally, the basis function associated with ẋi+1 is the only
one with a non-zero first derivative. In fact, it has a first derivative of exactly +1 (the function values
leading up to that have to be negative because the final function value has to be 0).

This can be summarized by:

25

helper.py

[24]: sp.Matrix([[
b.subs(t, 0),
b.subs(t, 1),
b.diff(t).subs(t, 0),
b.diff(t).subs(t, 1),

] for b in b_H.expr])

[24]:

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Example Plot

To quickly check whether the matrix MH does what we expect, let’s plot an example segment.

[25]: import numpy as np

If we use the same API as for the other splines, we can reuse the helper functions for plotting from
helper.py.

[26]: from helper import plot_spline_2d, plot_tangents_2d

[27]: class UniformHermiteSegment:

grid = 0, 1

def __init__(self, control_values):
self.coeffs = sp.lambdify([], M_H.expr)() @ control_values

def evaluate(self, t):
t = np.expand_dims(t, -1)
return t**[3, 2, 1, 0] @ self.coeffs

Note

The @ operator is used here to do NumPy’s matrix multiplication18.

[28]: vertices = [0, 0], [5, 1]
tangents = [2, 3], [0, -2]

[29]: s = UniformHermiteSegment([*vertices, *tangents])

[30]: plot_spline_2d(s, chords=False)
plot_tangents_2d(tangents, vertices)

18 https://numpy.org/doc/stable/reference/generated/numpy.matmul.html

26

helper.py
https://numpy.org/doc/stable/reference/generated/numpy.matmul.html

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Relation to Bézier Splines

Above, we were using two positions (start and end) and two tangent vectors (at those same two posi-
tions) as control values:

[31]: control_values_H.name

[31]:

x4
x5
ẋ4
ẋ5

What about using four positions (and no tangent vectors) instead?

Let’s use the point x̃4 as a “drag point” (connected to x4) that controls the tangent vector. Same for x̃5
(connected to x5).

And since the tangents looked unwieldily long in the plot above (compared to the effect they have on
the shape of the curve), let’s put the drag points only at a third of the length of the tangents, shall we?

x̃4 = x4 +
ẋ4

3

x̃5 = x5 −
ẋ5

3

[32]: control_values_B = NamedMatrix(sp.Matrix([
x4.name,
sp.Symbol(xtildebm4),
sp.Symbol(xtildebm5),
x5.name,

]), sp.Matrix([
x4.name,
x4.name + xd4.name / 3,
x5.name - xd5.name / 3,
x5.name,

]))
control_values_B

27

[32]:

x4
x̃4
x̃5
x5

 =

x4

x4 +
ẋ4
3

x5 − ẋ5
3

x5

Now let’s try to come up with a matrix that transforms our good old Hermite control values into our
new control points.

[33]: M_HtoB = NamedMatrix(r {M_\text{H\toB}} , 4, 4)

[34]: NamedMatrix(control_values_B.name, M_HtoB.name * control_values_H.name)

[34]:

x4
x̃4
x̃5
x5

 = MH→B

x4
x5
ẋ4
ẋ5

We can immediately read the matrix coefficients off the previous expression.

[35]: M_HtoB.expr = sp.Matrix([
[expr.coeff(cv) for cv in control_values_H.name]
for expr in control_values_B.expr])

M_HtoB

[35]:

MH→B =

1 0 0 0
1 0 1

3 0
0 1 0 − 1

3
0 1 0 0

[36]: print(_.expr)

Matrix([[1, 0, 0, 0], [1, 0, 1/3, 0], [0, 1, 0, -1/3], [0, 1, 0, 0]])

The inverse of this matrix transforms our new control points into Hermite control values:

[37]: M_BtoH = NamedMatrix(r {M_\text{B\toH}} , M_HtoB.I.expr)
M_BtoH

[37]:

MB→H =

1 0 0 0
0 0 0 1
−3 3 0 0
0 0 −3 3

[38]: print(_.expr)

Matrix([[1, 0, 0, 0], [0, 0, 0, 1], [-3, 3, 0, 0], [0, 0, -3, 3]])

When we combine MH with this new matrix, we get a matrix which leads us to a new set of basis poly-
nomials associated with the 4 control points.

[39]: M_B = NamedMatrix(r {M_\text{B}} , M_H.name * M_BtoH.name)
M_B

[39]: MB = MHMB→H

[40]: M_B = M_B.subs_symbols(M_H, M_BtoH).doit()
M_B

28

[40]:

MB =

−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0

[41]: b_B = NamedMatrix(r {b_\text{B}} , b_monomial * M_B.expr)

b_B.T

[41]:

bBT =

−t3 + 3t2 − 3t + 1

3t3 − 6t2 + 3t
−3t3 + 3t2

t3

[42]: plot_basis(

*b_B.expr,
labels=sp.symbols(xbm_i xtildebm_i xtildebm_i+1 xbm_i+1))

0 1t

0

1

we
ig

ht

xi

xi

xi + 1
xi + 1

Those happen to be the cubic Bernstein polynomials and it turns out that we just invented Bézier curves!
See the section about Bézier splines (page 45) for more information about them.

We chose the additional control points to be located at 1
3 of the tangent vector. Let’s quickly visualize

this using the example from above and MH→B:

[43]: points = sp.lambdify([], M_HtoB.expr)() @ [*vertices, *tangents]

[44]: import matplotlib.pyplot as plt

[45]: plot_spline_2d(s, chords=False)
plot_tangents_2d(tangents, vertices)
plt.scatter(*points.T, marker= X , color= black)
plt.annotate(r $\quad\tilde{\bf{x}}_0$, points[1])
plt.annotate(r $\tilde{\bf{x}}_1\quad$, points[2], ha= right);

29

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

x0

x1

. doc/euclidean/hermite-uniform.ipynb ends here.

The following section was generated from doc/euclidean/hermite-non-uniform.ipynb .

Non-Uniform Cubic Hermite Splines

We have already derived uniform cubic Hermite splines (page 21), where the parameter t ranges from 0 to
1.

When we want to use non-uniform cubic Hermite splines, and therefore arbitrary ranges from ti to ti+1,
we have (at least) two possibilities:

• Do the same derivations as in the uniform case, exceptwhenwe previously evaluated an expression
at the parameter value t = 0, we now evaluate it at the value t = ti. Of course we do the same with
t = 1→ t = ti+1.

• Re-scale the non-uniform parameter using t → t−ti
ti+1−ti

(which makes the new parameter go from 0
to 1) and then simply use the results from the uniform case.

The first approach leads to more complicated expressions in the basis matrix and the basis polynomials,
but it has the advantage that the parameter value doesn’t have to be re-scaled each timewhen evaluating
the spline for a given parameter (which might be slightly more efficient).

The second approach has the problem that it doesn’t actually work correctly, but we will see that we can
make a slight adjustment to fix that problem (spoiler alert: we will have to multiply the tangent vectors
by ∆i).

The class splines.CubicHermite (page 183) is implemented using the second approach (because its parent
class splines.Monomial (page 182) also uses the re-scaling approach).

We show the second approach here, but the first approach can be carried out very similarly, with
only very few changed steps. The appropriate changes are mentioned below.

[1]: from pprint import pprint
import sympy as sp
sp.init_printing(order= grevlex)

[2]: from utility import NamedExpression, NamedMatrix

30

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/euclidean/hermite-uniform.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/euclidean/hermite-non-uniform.ipynb

To simplify the indices in the following derivation, we are again looking at the fifth polynomial segment
p4(t) from x4 to x5, where t4 ≤ t ≤ t5. The results will be easily generalizable to an arbitrary polynomial
segment pi(t) from xi to xi+1, where ti ≤ t ≤ ti+1.

[3]: t, t4, t5 = sp.symbols(t t4:6)

[4]: coefficients = sp.Matrix(sp.symbols(a:dbm4)[::-1])
b_monomial = sp.Matrix([t**3, t**2, t, 1]).T
b_monomial.dot(coefficients)

[4]: d4t3 + c4t2 + b4t + a4

We use the humble cubic polynomial (with monomial basis) to represent our curve segment p4(t), but
we re-scale the parameter to map t4 → 0 and t5 → 1:

[5]: p4 = NamedExpression(pbm4 , _.subs(t, (t - t4) / (t5 - t4)))

If you don’t want to do the re-scaling, simply un-comment the next line!

[6]: #p4 = NamedExpression(pbm4 , b_monomial.dot(coefficients))

Either way, this is our polynomial segment …

[7]: p4

[7]:
p4 =

d4 (t− t4)
3

(−t4 + t5)
3 +

c4 (t− t4)
2

(−t4 + t5)
2 +

b4 (t− t4)

−t4 + t5
+ a4

… and it’s derivative/velocity/tangent vectors:

[8]: pd4 = p4.diff(t)
pd4

[8]: d
dt

p4 =
3d4 (t− t4)

2

(−t4 + t5)
3 +

c4 · (2t− 2t4)

(−t4 + t5)
2 +

b4

−t4 + t5

The next steps are very similar to what we did in the uniform case (page 21), except that we use t4 and t5
instead of 0 and 1, respectively.

[9]: x4 = p4.evaluated_at(t, t4).with_name(xbm4)
x5 = p4.evaluated_at(t, t5).with_name(xbm5)
xd4 = pd4.evaluated_at(t, t4).with_name(xdotbm4)
xd5 = pd4.evaluated_at(t, t5).factor().with_name(xdotbm5)

To simplify things, we define a new symbol ∆4 = t5 − t4, representing the duration of the current seg-
ment. However, we only use this for simplifying the display, further calculations are still carried out
with ti.

[10]: delta = {
t5 - t4: sp.Symbol(Delta4),

}

[11]: display(x4, x5, xd4.subs(delta), xd5.subs(delta))

x4 = a4

x5 = a4 + b4 + c4 + d4

31

ẋ4 =
b4

∆4

ẋ5 =
b4 + 2c4 + 3d4

∆4

Basis Matrix

In contrast to the uniform case, where the same basis matrix could be used for all segments, here we
need a different matrix for each segment.

[12]: M_H = NamedMatrix(r {M_{\text{H},4}} , 4, 4)

[13]: control_values_H = NamedMatrix(
sp.Matrix([x4.name, x5.name, xd4.name, xd5.name]),
M_H.name.I * coefficients)

control_values_H

[13]:

x4
x5
ẋ4
ẋ5

 = MH,4
−1

d4
c4
b4
a4

[14]: substitutions = x4, x5, xd4, xd5

[15]: control_values_H.subs_symbols(*substitutions).subs(delta)

[15]:

a4
a4 + b4 + c4 + d4

b4
∆4

b4+2c4+3d4
∆4

 = MH,4
−1

d4
c4
b4
a4

[16]: M_H.I = sp.Matrix([

[expr.expand().coeff(c) for c in coefficients]
for expr in control_values_H.subs_symbols(*substitutions).name])

M_H.I.subs(delta)

[16]:

MH,4
−1 =

0 0 0 1
1 1 1 1
0 0 1

∆4
0

3
∆4

2
∆4

1
∆4

0

[17]: pprint(_.expr)

Matrix([
[0, 0, 0, 1],
[1, 1, 1, 1],
[0, 0, 1/Delta4, 0],
[3/Delta4, 2/Delta4, 1/Delta4, 0]])

[18]: M_H.factor().subs(delta)

32

[18]:

MH,4 =

2 −2 ∆4 ∆4
−3 3 −2∆4 −∆4
0 0 ∆4 0
1 0 0 0

[19]: pprint(_.expr)

Matrix([
[2, -2, Delta4, Delta4],
[-3, 3, -2*Delta4, -Delta4],
[0, 0, Delta4, 0],
[1, 0, 0, 0]])

Basis Polynomials

[20]: b_H = NamedMatrix(r {b_{\text{H},4}} , b_monomial * M_H.expr)
b_H.factor().subs(delta).simplify().T

[20]:

bH,4
T =

(t− 1)2 · (2t + 1)

t2 · (−2t + 3)
∆4t (t− 1)2

∆4t2 (t− 1)

Those are the non-uniform (cubic) Hermite basis functions. Not surprisingly, they are different for each
segment, because generally the values ∆i are different in the non-uniform case.

Example Plot

To quickly check whether the matrix MH,4 does what we expect, let’s plot an example segment.

[21]: import numpy as np

If we use the same API as for the other splines, we can reuse the helper functions for plotting from
helper.py:

[22]: from helper import plot_spline_2d, plot_tangents_2d

The following code re-scales the parameter with t = (t - begin) / (end - begin). If you did not
re-scale t in the derivation above, you’ll have to remove this line.

[23]: class HermiteSegment:

def __init__(self, control_values, begin, end):
array = sp.lambdify([t4, t5], M_H.expr)(begin, end)
self.coeffs = array @ control_values
self.grid = begin, end

def evaluate(self, t):
t = np.expand_dims(t, -1)
begin, end = self.grid
If you derived M_H without re-scaling t, remove the following line:
t = (t - begin) / (end - begin)
return t**[3, 2, 1, 0] @ self.coeffs

33

helper.py

[24]: vertices = [0, 0], [5, 1]
tangents = [2, 3], [0, -2]

We can simulate the uniform case by specifying a parameter range from 0 to 1:

[25]: s1 = HermiteSegment([*vertices, *tangents], 0, 1)

[26]: plot_spline_2d(s1, chords=False)
plot_tangents_2d(tangents, vertices)

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

But other ranges should work as well:

[27]: s2 = HermiteSegment([*vertices, *tangents], 2.1, 5.5)

[28]: plot_spline_2d(s2, chords=False)
plot_tangents_2d(tangents, vertices)

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

34

Utilizing the Uniform Basis Matrix

If you did not re-scale t in the beginning of the derivation, you can use the matrix MH,i to calculate
the monomial coefficients of each segment (as shown in the example code above) and be done with
it. The following simplification only applies if you did re-scale t.

If you did re-scale t, the basis matrix and the basis polynomials will look very similar to the uniform
case (page 21), but they are not quite the same. This means that simply re-scaling the parameter is not
enough to correctly use the uniform results for implementing non-uniform Hermite splines.

However, we can see that the only difference is that the components associatedwith ẋ4 and ẋ5 are simply
multiplied by ∆4. That means if we re-scale the parameter and multiply the given tangent vectors by ∆i,
we can indeed use the uniform workflow.

Just to make sure we are actually telling the truth, let’s check that the control values with scaled tangent
vectors …

[29]: control_values_H_scaled = sp.Matrix([
x4.name,
x5.name,
(t5 - t4) * xd4.name,
(t5 - t4) * xd5.name,

])
control_values_H_scaled.subs(delta)

[29]:

x4
x5

∆4 ẋ4
∆4 ẋ5

… really lead to the same result as when using the uniform basis matrix:

[30]: sp.Eq(
sp.simplify(M_H.expr * control_values_H.name),
sp.simplify(sp.Matrix([

[2, -2, 1, 1],
[-3, 3, -2, -1],
[0, 0, 1, 0],
[1, 0, 0, 0],

]) * control_values_H_scaled))

[30]: True

The following line will fail if you did not rescale t:

[31]: assert _ == True

To make a long story short, to implement a non-uniform cubic Hermite spline segment, we can simply
re-scale the parameter to a range from 0 to 1 (by substituting t → t−ti

ti+1−ti
), multiply both given tangent

vectors by ∆i = ti+1 − ti and then use the implementation of the uniform cubic Hermite spline segment.

Another way of looking at this is to consider the uniform polynomial segment ui(t) and its tangent vector
(i.e. first derivative) u′i(t). If we want to know the tangent vector after substituting t→ t−ti

∆i
, we have to

use the chain rule19 (with the inner derivative being 1
∆i
):

19 https://en.wikipedia.org/wiki/Chain_rule

35

https://en.wikipedia.org/wiki/Chain_rule

d
dt

ui

(
t− ti

∆i

)
=

1
∆i

u′i

(
t− ti

∆i

)
.

This means the tangent vectors have been shrunk by ∆i! If we want to maintain the original lengths of
our tangent vectors, we can simply scale them by ∆i beforehand.
. doc/euclidean/hermite-non-uniform.ipynb ends here.

2.5 Natural Splines

Sometimes simply called (cubic) spline interpolation20, a natural spline is modelled after a drawing tool
called spline21, which is made from a thin piece of elastic material like wood or metal.

A Python implementation is available in the class splines.Natural (page 184). Alternatively, the Cubic-
Spline22 class from SciPy can be used.

The following section was generated from doc/euclidean/natural-properties.ipynb .

Properties of Natural Splines

Themost important property of (cubic) natural splines is that they are C2 continuous, whichmeans that
the second derivatives match at the transitions between segments. On top of that, they are interpolating,
which means that the curve passes through the given control points.

[1]: import splines
import matplotlib.pyplot as plt

[2]: vertices = [
(0, 0),
(1, 1),
(1.5, 1),
(1.5, -0.5),
(3.5, 0),
(3, 1),
(2, 0.5),
(0.5, -0.5),

]

To show an example, we use the class splines.Natural (page 184) and a plotting function from helper.py:

[3]: from helper import plot_spline_2d

[4]: plot_spline_2d(
splines.Natural(vertices, endconditions= closed),
chords=False)

20 https://en.wikipedia.org/wiki/Spline_interpolation
21 https://en.wiktionary.org/wiki/spline
22 https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicSpline.html

36

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/euclidean/hermite-non-uniform.ipynb
https://en.wikipedia.org/wiki/Spline_interpolation
https://en.wiktionary.org/wiki/spline
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicSpline.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicSpline.html
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/euclidean/natural-properties.ipynb
helper.py

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.5

0.0

0.5

1.0

A downside of natural splines is that they don’t provide local control. Changing only a single control
point potentially influences the whole curve.

[5]: modified_vertices = vertices.copy()
modified_vertices[6] = 1, 0.5

[6]: plot_spline_2d(
splines.Natural(vertices, endconditions= closed),
chords=False)

plot_spline_2d(
splines.Natural(modified_vertices, endconditions= closed),
chords=False)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.5

0.0

0.5

1.0

We can see that there are deviations in all segments, not only close to the modified vertex.

For comparison, we can use the same vertices to create a uniform cubic Catmull–Rom spline (page 65)
using the splines.CatmullRom (page 184) class:

[7]: plot_spline_2d(
splines.CatmullRom(vertices, endconditions= closed),
chords=False)

plot_spline_2d(
splines.CatmullRom(modified_vertices, endconditions= closed),

(continues on next page)

37

(continued from previous page)

chords=False)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.50
0.25
0.00
0.25
0.50
0.75
1.00
1.25

Here we can see that two segments before and two segments after the modified vertex are affected, but
the rest of the segments remain unchanged.

Although this is typically only used with Catmull–Rom splines, we can also use centripetal parameteriza-
tion (page 73) for a natural spline:

[8]: plot_spline_2d(
splines.Natural(vertices, endconditions= closed),
chords=False, label= uniform)

plot_spline_2d(
splines.Natural(vertices, endconditions= closed , alpha=0.5),
chords=False, label= centripetal)

plt.legend(numpoints=3);

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.5

0.0

0.5

1.0
uniform
centripetal

. doc/euclidean/natural-properties.ipynb ends here.

The following section was generated from doc/euclidean/natural-uniform.ipynb .

Uniform Natural Splines

For deriving natural splines, we first look at the uniform case, which means that the parameter interval
in each segment is chosen to be 1.

38

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/euclidean/natural-properties.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/euclidean/natural-uniform.ipynb

The more general case with arbitrary parameter intervals is derived in a separate notebook about
non-uniform natural splines (page 42).

[1]: import sympy as sp
sp.init_printing(order= grevlex)

We import some helpers from utility.py:

[2]: from utility import NamedExpression, dotproduct

[3]: t = sp.symbols(t)

To get started, let’s look at two neighboring segments: Let’s say the fourth segment, from x3 to x4, defined
by the polynomial p3, and the fifth segment, from x4 to x5, defined by the polynomial p4. In both cases,
we use 0 ≤ t ≤ 1.

[4]: coefficients3 = sp.symbols(a:dbm3)[::-1]
coefficients4 = sp.symbols(a:dbm4)[::-1]

We apply these coefficients to the monomial basis (page 3) …

[5]: b_monomial = t**3, t**2, t, 1

… to define the two polynomials …

[6]: p3 = NamedExpression(pbm3 , dotproduct(b_monomial, coefficients3))
p4 = NamedExpression(pbm4 , dotproduct(b_monomial, coefficients4))
display(p3, p4)

p3 = d3t3 + c3t2 + b3t + a3

p4 = d4t3 + c4t2 + b4t + a4

… and we calculate their first derivatives:

[7]: pd3 = p3.diff(t)
pd4 = p4.diff(t)
display(pd3, pd4)

d
dt

p3 = 3d3t2 + 2c3t + b3

d
dt

p4 = 3d4t2 + 2c4t + b4

From this, we obtain 8 equations containing the 8 yet unknown coefficients.

[8]: equations = [
p3.evaluated_at(t, 0).with_name(xbm3),
p3.evaluated_at(t, 1).with_name(xbm4),
p4.evaluated_at(t, 0).with_name(xbm4),
p4.evaluated_at(t, 1).with_name(xbm5),
pd3.evaluated_at(t, 0).with_name(xbmdot3),
pd3.evaluated_at(t, 1).with_name(xbmdot4),
pd4.evaluated_at(t, 0).with_name(xbmdot4),
pd4.evaluated_at(t, 1).with_name(xbmdot5),

]
display(*equations)

x3 = a3

x4 = a3 + b3 + c3 + d3

39

utility.py

x4 = a4

x5 = a4 + b4 + c4 + d4

ẋ3 = b3

ẋ4 = b3 + 2c3 + 3d3

ẋ4 = b4

ẋ5 = b4 + 2c4 + 3d4

We can solve the system of equations to get an expression for each coefficient:

[9]: coefficients = sp.solve(equations, coefficients3 + coefficients4)
for c, e in coefficients.items():

display(NamedExpression(c, e))

a3 = x3
a4 = x4

b3 = ẋ3

b4 = ẋ4

c3 = −3x3 + 3x4 − 2ẋ3 − ẋ4

c4 = −3x4 + 3x5 − 2ẋ4 − ẋ5

d3 = 2x3 − 2x4 + ẋ3 + ẋ4

d4 = 2x4 − 2x5 + ẋ4 + ẋ5

So far, this is the same as we have done in the notebook about uniform Hermite splines (page 21). In fact, the
above constants are the same as in MH!

An additional constraint for natural splines is that the second derivatives are continuous, so let’s calcu-
late those derivatives …

[10]: pdd3 = pd3.diff(t)
pdd4 = pd4.diff(t)
display(pdd3, pdd4)

d2

dt2 p3 = 6d3t + 2c3

d2

dt2 p4 = 6d4t + 2c4

… and set them to be equal at the segment border:

[11]: sp.Eq(pdd3.expr.subs(t, 1), pdd4.expr.subs(t, 0))

[11]: 2c3 + 6d3 = 2c4

Inserting the equations from above leads to this equation:

[12]: _.subs(coefficients).simplify()

[12]: 3x3 = 3x5 − ẋ3 − 4ẋ4 − ẋ5

We can generalize this expression by renaming index 4 to i:

ẋi−1 + 4ẋi + ẋi+1 = 3(xi+1 − xi−1)

This can be used for each segment – except for the very first and last one – yielding a matrix with N
columns and N − 2 rows:

40

1 4 1 · · · 0

1 4 1
...

.
... 1 4 1
0 · · · 1 4 1

ẋ0
ẋ1
...

ẋN−2
ẋN−1

 =

3(x2 − x0)
3(x3 − x1)

...
3(xN−2 − xN−4)
3(xN−1 − xN−3)

End Conditions

We need a first and last row for this matrix to be able to fully define a natural spline. The following
subsections show a selection of a few end conditions which can be used to obtain themissing rows of the
matrix. End conditions (except “closed”) can be mixed, e.g. “clamped” at the beginning and “natural”
at the end. The Python class splines.Natural (page 184) uses “natural” end conditions by default.

Natural

Natural end conditions are commonly used for natural splines, which is probably why they are named
that way.

There is a separate notebook about “natural” end conditions (page 114), from which we can get the uniform
case by setting ∆i = 1:

2ẋ0 + ẋ1 = 3(x1 − x0)

ẋN−2 + 2ẋN−1 = 3(xN−1 − xN−2)

Adding this to the matrix from above leads to a full N × N matrix:

2 1 · · · 0

1 4 1
...

1 4 1
.
1 4 1

... 1 4 1
0 · · · 1 2

ẋ0
ẋ1
...

ẋN−2
ẋN−1

 =

3(x1 − x0)
3(x2 − x0)
3(x3 − x1)

...
3(xN−2 − xN−4)
3(xN−1 − xN−3)
3(xN−1 − xN−2)

Clamped

We can simply provide arbitrarily chosen values Dbegin and Dend for the end tangents. This is called
clamped end conditions.

ẋ0 = Dbegin

ẋN−1 = Dend

This leads to a very simple first and last line:

41

1 · · · 0

1 4 1
...

1 4 1
.
1 4 1

... 1 4 1
0 · · · 1

ẋ0
ẋ1
...

ẋN−2
ẋN−1

 =

Dbegin
3(x2 − x0)
3(x3 − x1)

...
3(xN−2 − xN−4)
3(xN−1 − xN−3)

Dend

Closed

We can close the spline by connecting xN−1 with x0. This can be realized by cyclically extending the
matrix in both directions:

4 1 · · · 0 1
1 4 1 0 0

1 4 1
...

.
... 1 4 1
0 0 1 4 1
1 0 · · · 1 4

ẋ0
ẋ1
...

ẋN−2
ẋN−1

 =

3(x1 − xN−1)
3(x2 − x0)
3(x3 − x1)

...
3(xN−2 − xN−4)
3(xN−1 − xN−3)

3(x0 − xN−2)

Solving the System of Equations

The matrices above are tridiagonal and can therefore be solved efficiently with a tridiagonal matrix algo-
rithm23. The class splines.Natural (page 184), however, is not very concerned about efficiency and simply
uses NumPy’s linalg.solve()24 function to solve the system of equations.
. doc/euclidean/natural-uniform.ipynb ends here.

The following section was generated from doc/euclidean/natural-non-uniform.ipynb .

Non-Uniform Natural Splines

The derivation is similar to the uniform case (page 38), but this time the parameter intervals can have
arbitrary values.

[1]: import sympy as sp
sp.init_printing(order= grevlex)

[2]: from utility import NamedExpression, dotproduct

[3]: t = sp.symbols(t)

Just like in the uniform case, we are considering two adjacent spline segments, but now we must allow
arbitrary parameter values:

[4]: t3, t4, t5 = sp.symbols(t3:6)

23 https://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm
24 https://numpy.org/doc/stable/reference/generated/numpy.linalg.solve.html

42

https://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm
https://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm
https://numpy.org/doc/stable/reference/generated/numpy.linalg.solve.html
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/euclidean/natural-uniform.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/euclidean/natural-non-uniform.ipynb

[5]: b_monomial = t**3, t**2, t, 1

[6]: coefficients3 = sp.symbols(a:dbm3)[::-1]
coefficients4 = sp.symbols(a:dbm4)[::-1]

[7]: p3 = NamedExpression(
pbm3 ,

dotproduct(b_monomial, coefficients3).subs(t, (t - t3)/(t4 - t3)))
p4 = NamedExpression(

pbm4 ,
dotproduct(b_monomial, coefficients4).subs(t, (t - t4)/(t5 - t4)))

display(p3, p4)

p3 =
d3 (t− t3)

3

(−t3 + t4)
3 +

c3 (t− t3)
2

(−t3 + t4)
2 +

b3 (t− t3)

−t3 + t4
+ a3

p4 =
d4 (t− t4)

3

(−t4 + t5)
3 +

c4 (t− t4)
2

(−t4 + t5)
2 +

b4 (t− t4)

−t4 + t5
+ a4

[8]: pd3 = p3.diff(t)
pd4 = p4.diff(t)
display(pd3, pd4)

d
dt

p3 =
3d3 (t− t3)

2

(−t3 + t4)
3 +

c3 · (2t− 2t3)

(−t3 + t4)
2 +

b3

−t3 + t4

d
dt

p4 =
3d4 (t− t4)

2

(−t4 + t5)
3 +

c4 · (2t− 2t4)

(−t4 + t5)
2 +

b4

−t4 + t5

[9]: equations = [
p3.evaluated_at(t, t3).with_name(xbm3),
p3.evaluated_at(t, t4).with_name(xbm4),
p4.evaluated_at(t, t4).with_name(xbm4),
p4.evaluated_at(t, t5).with_name(xbm5),
pd3.evaluated_at(t, t3).with_name(xbmdot3),
pd3.evaluated_at(t, t4).with_name(xbmdot4),
pd4.evaluated_at(t, t4).with_name(xbmdot4),
pd4.evaluated_at(t, t5).with_name(xbmdot5),

]

We introduce a few new symbols to simplify the display, but we keep calculating with ti:

[10]: deltas = {
t3: 0,
t4: sp.Symbol(Delta3),
t5: sp.Symbol(Delta3) + sp.Symbol(Delta4),

}

[11]: for e in equations:
display(e.subs(deltas))

x3 = a3

x4 = a3 + b3 + c3 + d3
x4 = a4

x5 = a4 + b4 + c4 + d4

ẋ3 =
b3

∆3

43

ẋ4 =
b3

∆3
+

2c3

∆3
+

3d3

∆3

ẋ4 =
b4

∆4

ẋ5 =
b4

∆4
+

2c4

∆4
+

3d4

∆4

[12]: coefficients = sp.solve(equations, coefficients3 + coefficients4)

[13]: for c, e in coefficients.items():
display(NamedExpression(c, e.factor().subs(deltas).simplify()))

a3 = x3
a4 = x4

b3 = ∆3 ẋ3

b4 = ∆4 ẋ4

c3 = −2∆3 ẋ3 − ∆3 ẋ4 − 3x3 + 3x4

c4 = −2∆4 ẋ4 − ∆4 ẋ5 − 3x4 + 3x5

d3 = ∆3 ẋ3 + ∆3 ẋ4 + 2x3 − 2x4

d4 = ∆4 ẋ4 + ∆4 ẋ5 + 2x4 − 2x5

[14]: pdd3 = pd3.diff(t)
pdd4 = pd4.diff(t)
display(pdd3, pdd4)

d2

dt2 p3 =
3d3 · (2t− 2t3)

(−t3 + t4)
3 +

2c3

(−t3 + t4)
2

d2

dt2 p4 =
3d4 · (2t− 2t4)

(−t4 + t5)
3 +

2c4

(−t4 + t5)
2

[15]: sp.Eq(pdd3.expr.subs(t, t4), pdd4.expr.subs(t, t4))

[15]: 3d3 (−2t3 + 2t4)

(−t3 + t4)
3 +

2c3

(−t3 + t4)
2 =

2c4

(−t4 + t5)
2

[16]: _.subs(coefficients).subs(deltas).simplify()

[16]: 2 (∆3 ẋ3 + 2∆3 ẋ4 + 3x3 − 3x4)

∆2
3

=
2 (−2∆4 ẋ4 − ∆4 ẋ5 − 3x4 + 3x5)

∆2
4

Like in the uniform case, we can generalize by renaming index 4 to i:

1
∆i−1

ẋi−1 +

(
2

∆i−1
+

2
∆i

)
ẋi +

1
∆i

ẋi+1 =
3(xi − xi−1)

∆i−1
2 +

3(xi+1 − xi)

∆i
2

We are not showing the full matrix here, because it would be quite a bit more complicated and less
instructive than in the uniform case.

44

End Conditions

Like in the uniform case (page 41), we can come up with a few end conditions in order to define the
missing matrix rows.

The Python class splines.Natural (page 184) uses “natural” end conditions by default.

“Natural” end conditions are derived in a separate notebook (page 114), yielding these expressions:

2∆0 ẋ0 + ∆0 ẋ1 = 3(x1 − x0)

∆N−2 ẋN−2 + 2∆N−2 ẋN−1 = 3(xN−1 − xN−2)

Other end conditions can be derived as shown in the notebook about uniform “natural” splines (page 41).
. doc/euclidean/natural-non-uniform.ipynb ends here.

2.6 Bézier Splines

Named after Pierre Bézier25, Bézier curves are defined by means of Bernstein polynomials26 [Far12],
which are named after Sergei Bernstein27. A popular method to evaluate Bézier curves at given pa-
rameter values is De Casteljau’s algorithm (page 46). A very good online resource with many interactive
examples is the website https://pomax.github.io/bezierinfo/.

Bézier splines are composed of Bézier curve segments.

A Python implementation is available in the class splines.Bernstein (page 183).

The following section was generated from doc/euclidean/bezier-properties.ipynb .

Properties of Bézier Splines

The terms Bézier spline and Bézier curve are sometimes used interchangeably for two slightly different
things:

1. A curve constructed from a single Bernstein polynomial of degree d, given a control polygon con-
sisting of a sequence of d + 1 vertices. The first and last vertex lie on the curve (at its start and end,
respectively), while the other vertices in general don’t (the curve approximates them).

2. A piecewise polynomial curve consisting of multiple segments, each of them constructed from a
separate Bernstein polynomial. The start and end points of neighboring control polygons typically
coincide, leading to C0 continuity. However, the overall control polygon can be chosen in a way to
achieve G1 or C1 (or even higher) continuity.

We use the term Bézier curve for the former and Bézier spline for the latter. Bézier splines in the latter
sense are well known from their common use in 2D vector graphics software, where cubic (i.e. degree
3) curve segments are typically used. Each segment has four control points: The start and end point of
the segment (shared with the end and start of the previous and next segment, respectively) as well as
two additional points that control the shape of the curve segment.

[1]: import matplotlib.pyplot as plt
import numpy as np

[2]: import splines

25 https://en.wikipedia.org/wiki/Pierre_Bézier
26 https://en.wikipedia.org/wiki/Bernstein_polynomial
27 https://en.wikipedia.org/wiki/Sergei_Bernstein

45

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/euclidean/natural-non-uniform.ipynb
https://en.wikipedia.org/wiki/Pierre_Bézier
https://en.wikipedia.org/wiki/Bernstein_polynomial
https://en.wikipedia.org/wiki/Sergei_Bernstein
https://pomax.github.io/bezierinfo/
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/euclidean/bezier-properties.ipynb

As an example, we create control points for a Bézier spline consisting of four segments, having polyno-
mial degrees of 1, 2, 3 and 4.

[3]: control_points = [
[(0, 0), (1, 4)],
[(1, 4), (2, 2), (4, 4)],
[(4, 4), (6, 4), (5, 2), (7, 2)],
[(7, 2), (8, 0), (4, 0), (5, 1), (3, 1)],

]

We are using the class splines.Bernstein (page 183) to construct a Bézier spline from these control points.

[4]: s = splines.Bernstein(control_points)

[5]: times = np.linspace(s.grid[0], s.grid[-1], 100)

[6]: fig, ax = plt.subplots()
for segment in control_points:

xy = np.transpose(segment)
ax.plot(*xy, --)
ax.scatter(*xy, color= grey)

ax.plot(*s.evaluate(times).T, k.)
ax.axis(equal);

0 1 2 3 4 5 6 7 8
0

1

2

3

4

. doc/euclidean/bezier-properties.ipynb ends here.

The following section was generated from doc/euclidean/bezier-de-casteljau.ipynb .

De Casteljau’s Algorithm

There are several ways that lead to Bézier curves, one (but only for cubic curves) was already shown in
the notebook about Hermite curves (page 27). In this notebook, we will derive Bézier curves of arbitrary
polynomial degree utilizing De Casteljau’s algorithm28.

28 https://en.wikipedia.org/wiki/De_Casteljau s_algorithm

46

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/euclidean/bezier-properties.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/euclidean/bezier-de-casteljau.ipynb
https://en.wikipedia.org/wiki/De_Casteljau's_algorithm

Preparations

[1]: %config InlineBackend.print_figure_kwargs = { bbox_inches : None}
import matplotlib.pyplot as plt
import numpy as np
import sympy as sp
sp.init_printing()

We import a few utilities and helpers from the files utility.py and helper.py.

[2]: from utility import NamedExpression, NamedMatrix
from helper import plot_basis

Let’s prepare a few symbols for later use …

[3]: t, x0, x1, x2, x3, x4 = sp.symbols(t, xbm:5)

… and a helper function for plotting:

[4]: def plot_curve(func, points, dots=30, ax=None):
if ax is None:

ax = plt.gca()
times = np.linspace(0, 1, dots)
ax.plot(*func(points, times).T, .)
ax.plot(

*np.asarray(points).T,
color= lightgrey ,
linestyle= : ,
marker= x ,
markeredgecolor= black ,

)
ax.scatter(*np.asarray(points).T, marker= x , c= black)
ax.set_title(func.__name__ + Bézier curve)
ax.axis(equal)

Wealso need to prepare for the animationswewill see below. This is using code from the file casteljau.
py:

[5]: from casteljau import create_animation

def show_casteljau_animation(points, frames=30, interval=200):
ani = create_animation(points, frames=frames, interval=interval)
display({

text/html : ani.to_jshtml(default_mode= reflect),
text/plain : Animations can only be shown in HTML output, sorry! ,

}, raw=True)
plt.close() # avoid spurious figure display

47

utility.py
helper.py
casteljau.py
casteljau.py

Degree 1 (Linear)

After all those preparations, let’s start with the trivial case: A Bézier spline of degree 1 is just a piecewise
linear curve connecting all the control points. There are no “off-curve” control points that could bend
the curve segments.

Assuming that we have two control points, x0 and x1, we can set up a linear equation:

p0,1(t) = x0 + t(x1 − x0).

Another way to write the same thing is like this:

p0,1(t) = (1− t)x0 + tx1,

where in both cases 0 ≤ t ≤ 1. These linear interpolations are sometimes also called affine combinations.
Since we will be needing quite a few of those linear interpolations, let’s create a helper function:

[6]: def lerp(one, two):
"""Linear interpolation.

The parameter *t* is expected to be between 0 and 1.

"""
return (1 - t) * one + t * two

Now we can define the equation in SymPy:

[7]: p01 = NamedExpression(pbm_0,1 , lerp(x0, x1))
p01

[7]: p0,1 = tx1 + x0 · (1− t)

[8]: b1 = [p01.expr.expand().coeff(x.name).factor() for x in (x0, x1)]
b1

[8]: [1− t, t]

Doesn’t look like much, but those are the Bernstein bases29 for degree 1. It doesn’t get much more
interesting if we plot them:

[9]: plot_basis(*b1)

29 https://en.wikipedia.org/wiki/Bernstein_polynomial

48

https://en.wikipedia.org/wiki/Bernstein_polynomial

0 1t

0

1
we

ig
ht 1 t

t

If you want to convert this to coefficients for the monomial basis (page 3) [t, 1] instead of the Bernstein
basis functions, you can use this matrix:

[10]: M_B1 = NamedMatrix(
r {M_\text{B}^{(1)}} ,
sp.Matrix([[c.coeff(x) for x in (x0, x1)]

for c in p01.expr.as_poly(t).all_coeffs()]))
M_B1

[10]:
M(1)

B =

[
−1 1
1 0

]
Applying this matrix leads to the coefficients of the linear equation mentioned in the beginning of this
section (p0,1(t) = t(x1 − x0) + x0):

[11]: sp.MatMul(M_B1.expr, sp.Matrix([x0, x1]))

[11]:
[
−1 1
1 0

] [
x0
x1

]

[12]: _.doit()

[12]:
[
−x0 + x1

x0

]
In case you ever need that, here’s the inverse:

[13]: M_B1.I

[13]: (
M(1)

B

)−1
=

[
0 1
1 1

]
Anyhow, let’s calculate points on the curve by using the Bernstein basis functions:

[14]: def linear(points, times):
"""Evaluate linear Bézier curve (given by two points) at given times."""
return np.column_stack(sp.lambdify(t, b1)(times)) @ points

49

[15]: points = [
(0, 0),
(1, 0.5),

]

[16]: plot_curve(linear, points)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5
linear Bézier curve

[17]: show_casteljau_animation(points)

Animations can only be shown in HTML output, sorry!

I know, not very exciting. But it gets better!

Degree 2 (Quadratic)

Now we consider three control points, x0, x1 and x2. We use the linear interpolation of the first two
points from above …

[18]: p01

[18]: p0,1 = tx1 + x0 · (1− t)

… and we do the same thing for the second and third point:

[19]: p12 = NamedExpression(pbm_1,2 , lerp(x1, x2))
p12

[19]: p1,2 = tx2 + x1 · (1− t)

Finally, we make another linear interpolation between those two results:

[20]: p02 = NamedExpression(pbm_0,2 , lerp(p01.expr, p12.expr))
p02

[20]: p0,2 = t (tx2 + x1 · (1− t)) + (1− t) (tx1 + x0 · (1− t))

From this, we can get the Bernstein basis functions of degree 2:

50

[21]: b2 = [p02.expr.expand().coeff(x.name).factor() for x in (x0, x1, x2)]
b2

[21]:
[
(t− 1)2 , −2t (t− 1) , t2

]
[22]: plot_basis(*b2)

0 1t

0

1

we
ig

ht

(t 1)2

2t(t 1)
t2

[23]: M_B2 = NamedMatrix(
r {M_\text{B}^{(2)}} ,
sp.Matrix([[c.coeff(x) for x in (x0, x1, x2)]

for c in p02.expr.as_poly(t).all_coeffs()]))
M_B2

[23]:
M(2)

B =

 1 −2 1
−2 2 0
1 0 0

[24]: M_B2.I

[24]: (
M(2)

B

)−1
=

0 0 1
0 1

2 1
1 1 1

[25]: def quadratic(points, times):

"""Evaluate quadratic Bézier curve (given by three points) at given times."""
return np.column_stack(sp.lambdify(t, b2)(times)) @ points

[26]: points = [
(0, 0),
(0.2, 0.5),
(1, -0.3),

]

[27]: plot_curve(quadratic, points)

51

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.2

0.0

0.2

0.4

quadratic Bézier curve

[28]: show_casteljau_animation(points)

Animations can only be shown in HTML output, sorry!

Quadratic Tangent Vectors

For some more insight, let’s look at the first derivative of the curve (i.e. the tangent vector) …

[29]: v02 = p02.diff(t)

… at the beginning and the end of the curve:

[30]: v02.evaluated_at(t, 0)

[30]: d
dt

p0,2

∣∣∣∣
t=0

= −2x0 + 2x1

[31]: v02.evaluated_at(t, 1)

[31]: d
dt

p0,2

∣∣∣∣
t=1

= −2x1 + 2x2

This shows that the tangent vector at the beginning and end of the curve is parallel to the line from x0
to x1 and from x1 to x2, respectively. The length of the tangent vectors is twice the length of those lines.

You might have already seen this coming, but it turns out that the last line in De Casteljau’s algorithm
(p1,2(t)− p0,1(t) in our case) is exactly half of the tangent vector (at any given t ∈ [0, 1]).

[32]: assert (v02.expr - 2 * (p12.expr - p01.expr)).simplify() == 0

In case you are wondering, the factor 2 comes from the degree 2 of our quadratic curve.

52

Degree 3 (Cubic)

Let’s now consider four control points, x0, x1, x2 and x3.

By now, the pattern should be clear: We take the result from the first three points from above and linearly
interpolate it with the result for the three points x1, x2 and x3, which we will derive in the following.

We still need the combination of x2 and x3 …

[33]: p23 = NamedExpression(pbm_2,3 , lerp(x2, x3))
p23

[33]: p2,3 = tx3 + x2 · (1− t)

… which we are using to calculate the combination of x1, x2 and x3 …

[34]: p13 = NamedExpression(pbm_1,3 , lerp(p12.expr, p23.expr))
p13

[34]: p1,3 = t (tx3 + x2 · (1− t)) + (1− t) (tx2 + x1 · (1− t))

… which we need for the combination of x0, x1, x2 and x3:

[35]: p03 = NamedExpression(pbm_0,3 , lerp(p02.expr, p13.expr))
p03

[35]: p0,3 = t (t (tx3 + x2 · (1− t)) + (1− t) (tx2 + x1 · (1− t))) +

(1− t) (t (tx2 + x1 · (1− t)) + (1− t) (tx1 + x0 · (1− t)))

This leads to the cubic Bernstein bases:

[36]: b3 = [p03.expr.expand().coeff(x.name).factor() for x in (x0, x1, x2, x3)]
b3

[36]:
[
− (t− 1)3 , 3t (t− 1)2 , −3t2 (t− 1) , t3

]
Those are of course the same Bernstein bases as we found in the notebook about Hermite splines (page 27).

[37]: plot_basis(*b3)

0 1t

0

1

we
ig

ht

(t 1)3

3t(t 1)2

3t2(t 1)
t3

53

[38]: M_B3 = NamedMatrix(
r {M_\text{B}^{(3)}} ,
sp.Matrix([[c.coeff(x) for x in (x0, x1, x2, x3)]

for c in p03.expr.as_poly(t).all_coeffs()]))
M_B3

[38]:

M(3)
B =

−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0

[39]: M_B3.I

[39]: (
M(3)

B

)−1
=

0 0 0 1
0 0 1

3 1
0 1

3
2
3 1

1 1 1 1

[40]: def cubic(points, times):

"""Evaluate cubic Bézier curve (given by four points) at given times."""
return np.column_stack(sp.lambdify(t, b3)(times)) @ points

[41]: points = [
(0, 0.3),
(0.2, 0.5),
(0.1, 0),
(1, 0.2),

]

[42]: plot_curve(cubic, points)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5
cubic Bézier curve

[43]: show_casteljau_animation(points)

Animations can only be shown in HTML output, sorry!

54

Cubic Tangent Vectors

As before, let’s look at the derivative (i.e. the tangent vector) of the curve …

[44]: v03 = p03.diff(t)

… at the beginning and the end of the curve:

[45]: v03.evaluated_at(t, 0)

[45]: d
dt

p0,3

∣∣∣∣
t=0

= −3x0 + 3x1

[46]: v03.evaluated_at(t, 1)

[46]: d
dt

p0,3

∣∣∣∣
t=1

= −3x2 + 3x3

This shows that the tangent vector at the beginning and end of the curve is parallel to the line from x0
to x1 and from x2 to x3, respectively. The length of the tangent vectors is three times the length of those
lines. This also means that if the begin and end positions x0 and x3 as well as the corresponding tangent
vectors ẋ0 and ẋ3 are given, it’s easy to calculate the two missing control points:

x1 = x0 +
ẋ0

3

x2 = x3 −
ẋ3

3

This can be used to turn uniform Hermite splines into Bézier splines (page 27) and to construct uniform
Catmull–Rom splines using Bézier segments (page 82).

We can now also see that the last linear segment in De Casteljau’s algorithm (p1,3(t) − p0,2(t) in this
case) is exactly a third of the tangent vector (at any given t ∈ [0, 1]):

[47]: assert (v03.expr - 3 * (p13.expr - p02.expr)).simplify() == 0

Again, the factor 3 comes from the degree 3 of our curve.

Cubic Bézier to Hermite Segments

We now know the tangent vectors at the beginning and the end of the curve, and obviously we know
the values of the curve at the beginning and the end:

[48]: p03.evaluated_at(t, 0)

[48]: p0,3

∣∣∣
t=0

= x0

[49]: p03.evaluated_at(t, 1)

[49]: p0,3

∣∣∣
t=1

= x3

With these four pieces of information, we can find a transformation from the four Bézier control points
to the two control points and two tangent vectors of a Hermite spline segment:

55

[50]: M_BtoH = NamedMatrix(
r {M_\text{B\toH}} ,
sp.Matrix([[expr.coeff(cv) for cv in [x0, x1, x2, x3]]

for expr in [
x0,
x3,
v03.evaluated_at(t, 0).expr,
v03.evaluated_at(t, 1).expr]]))

M_BtoH

[50]:

MB→H =

1 0 0 0
0 0 0 1
−3 3 0 0
0 0 −3 3

And we can simply invert this if we want to go in the other direction, from Hermite to Bézier:

[51]: M_BtoH.I.pull_out(sp.S.One / 3)

[51]:

MB→H
−1 =

1
3

3 0 0 0
3 0 1 0
0 3 0 −1
0 3 0 0

Of course, those are the same matrices as shown in the notebook about uniform cubic Hermite splines
(page 27).

Degree 4 (Quartic)

By now you know the drill, let’s consider five control points, x0, x1, x2, x3 and x4, which lead to more
linear interpolations:

[52]: p34 = NamedExpression(pbm_3,4 , lerp(x3, x4))
p24 = NamedExpression(pbm_2,4 , lerp(p23.expr, p34.expr))
p14 = NamedExpression(pbm_1,4 , lerp(p13.expr, p24.expr))
p04 = NamedExpression(pbm_0,4 , lerp(p03.expr, p14.expr))

The resulting expression for p0,4(t) is quite long and unwieldy (and frankly, quite boring as well), so
we are not showing it here.

[53]: #p04

Instead, we are using it immediately to extract the Bernstein bases:

[54]: b4 = [p04.expr.expand().coeff(x.name).factor() for x in (x0, x1, x2, x3, x4)]
b4

[54]:
[
(t− 1)4 , −4t (t− 1)3 , 6t2 (t− 1)2 , −4t3 (t− 1) , t4

]
[55]: plot_basis(*b4)

56

0 1t

0

1
we

ig
ht

(t 1)4

4t(t 1)3

6t2(t 1)2

4t3(t 1)
t4

[56]: M_B4 = NamedMatrix(
{M_B^{(4)}} ,

sp.Matrix([[c.coeff(x) for x in (x0, x1, x2, x3, x4)]
for c in p04.expr.as_poly(t).all_coeffs()]))

M_B4

[56]:

M(4)
B =

1 −4 6 −4 1
−4 12 −12 4 0
6 −12 6 0 0
−4 4 0 0 0
1 0 0 0 0

[57]: M_B4.I

[57]: (
M(4)

B

)−1
=

0 0 0 0 1
0 0 0 1

4 1
0 0 1

6
1
2 1

0 1
4

1
2

3
4 1

1 1 1 1 1

[58]: def quartic(points, times):

"""Evaluate quartic Bézier curve (given by five points) at given times."""
return np.column_stack(sp.lambdify(t, b4)(times)) @ points

[59]: points = [
(0, 0),
(0.5, 0),
(0.7, 1),
(1, 1.5),
(-1, 1),

]

[60]: plot_curve(quartic, points)

57

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0.00

0.25

0.50

0.75

1.00

1.25

1.50
quartic Bézier curve

[61]: show_casteljau_animation(points)

Animations can only be shown in HTML output, sorry!

Quartic Tangent Vectors

For completeness’ sake, let’s look at the derivative (i.e. the tangent vector) of the curve …

[62]: v04 = p04.diff(t)

… at the beginning and the end of the curve:

[63]: v04.evaluated_at(t, 0)

[63]: d
dt

p0,4

∣∣∣∣
t=0

= −4x0 + 4x1

[64]: v04.evaluated_at(t, 1)

[64]: d
dt

p0,4

∣∣∣∣
t=1

= −4x3 + 4x4

By now it shouldn’t be surprising that the tangent vector at the beginning and end of the curve is parallel
to the line from x0 to x1 and from x3 to x4, respectively. The length of the tangent vectors is four times
the length of those lines. The last line in De Casteljau’s algorithm (p1,4(t)− p0,3(t) in this case) is exactly
a fourth of the tangent vector (at any given t ∈ [0, 1]):

[65]: assert (v04.expr - 4 * (p14.expr - p03.expr)).simplify() == 0

Again, the factor 4 comes from the degree 4 of our curve.

58

Arbitrary Degree

We could go on doing this for higher and higher degrees, but this would get more and more annoying.
Luckily, there is a closed formula available to calculate Bernstein polynomials for an arbitrary degree n
(using the binomial coefficient30 (n

i) =
n!

i!(n−i)!):

bi,n(x) =
(

n
i

)
xi (1− x)n−i , i = 0, . . . , n.

This is used in the Python class splines.Bernstein (page 183).

[66]: show_casteljau_animation([
(0, 0),
(-1, 1),
(-0.5, 2),
(1, 2.5),
(2, 2),
(2, 1.5),
(0.5, 0.5),
(1, -0.5),

])

Animations can only be shown in HTML output, sorry!
. doc/euclidean/bezier-de-casteljau.ipynb ends here.

The following section was generated from doc/euclidean/bezier-non-uniform.ipynb .

Non-Uniform (Cubic) Bézier Splines

Very commonly, Bézier splines are used with a parameter range of 0 ≤ t ≤ 1, which has also been used
to derive the basis polynomials and basis matrices in the notebook about De Casteljau’s algorithm (page 46).

The parameter range can be re-scaled to any desired parameter range, but since the shape of a Bézier
curve is fully defined by its control polygon, this will not change the shape of the curve, but only its
speed, and therefore its tangent vectors.

To derive equations for non-uniform tangent vectors, let us quickly re-implement De Casteljau’s algo-
rithm:

[1]: def lerp(one, two, t):
return (1 - t) * one + t * two

[2]: def de_casteljau(points, t):
while len(points) > 1:

points = [lerp(a, b, t) for a, b in zip(points, points[1:])]
return points[0]

[3]: import sympy as sp
sp.init_printing()

We’ll also use our trusty SymPy tools from utility.py:

[4]: from utility import NamedExpression

In this notebook we are only looking at cubic Bézier splines. More specifically, we are looking at the fifth
spline segment, from x4 to x5 within a parameter range from t4 to t5, but later we can easily generalize
this.

30 https://en.wikipedia.org/wiki/Binomial_coefficient

59

https://en.wikipedia.org/wiki/Binomial_coefficient
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/euclidean/bezier-de-casteljau.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/euclidean/bezier-non-uniform.ipynb
utility.py

[5]: control_points = sp.symbols(xbm4 xtildebm4^(+) xtildebm5^(-) xbm5)
control_points

[5]:
(

x4, x̃(+)
4 , x̃(−)5 , x5

)
[6]: t, t4, t5 = sp.symbols(t t4 t5)

As before, we are using De Casteljau’s algorithm, but this time we are re-scaling the parameter range
using the transformation t→ t−ti

ti+1−ti
:

[7]: p4 = NamedExpression(
pbm4 ,

de_casteljau(control_points, (t - t4) / (t5 - t4)))

Tangent Vectors

As always, the tangent vectors can be obtained by means of the first derivative:

[8]: pd4 = p4.diff(t)

[9]: pd4.evaluated_at(t, t4)

[9]: d
dt

p4

∣∣∣∣
t=t4

= − 3x4

−t4 + t5
+

3x̃(+)
4

−t4 + t5

This expression for the outgoing tangent vector at x4 can be generalized to

ẋ(+)
i =

3
(

x̃(+)
i − xi

)
∆i

,

where ∆i = ti+1 − ti.

Similarly, the incoming tangent vector at x5 …

[10]: pd4.evaluated_at(t, t5)

[10]: d
dt

p4

∣∣∣∣
t=t5

=
3x5

−t4 + t5
−

3x̃(−)5
−t4 + t5

… can be generalized to

ẋ(−)i =
3
(

xi − x̃(−)
i

)
∆i−1

.

This is similar to the uniform case (page 55), the tangent vectors are just divided by the parameter interval.

60

Control Points From Tangent Vectors

If the tangent vectors are given in the first place – i.e. when a non-uniform Hermite spline (page 18) is
given, the cubic Bézier control points can be calculated like this:

x̃(+)
i = xi +

∆i ẋ
(+)
i

3

x̃(−)
i = xi −

∆i−1 ẋ(−)i
3

. doc/euclidean/bezier-non-uniform.ipynb ends here.

The following section was generated from doc/euclidean/quadrangle.ipynb .

2.7 Quadrangle Interpolation

This doesn’t seem to be a very popular type of spline. We are mainly mentioning it because it is the
starting point for interpolating rotations with Spherical Quadrangle Interpolation (Squad) (page 170).

[1]: import sympy as sp
sp.init_printing(order= grevlex)

As usual, we import some helpers from utility.py and helper.py:

[2]: from utility import NamedExpression, NamedMatrix
from helper import plot_basis

Let’s start – as we have done before – by looking at the fifth segment of a spline, between x4 and x5. It
will be referred to as p4(t), where 0 ≤ t ≤ 1.

[3]: x4, x5 = sp.symbols(xbm4:6)

Boehm [Boe82] mentions (on page 203) so-called quadrangle points:

[4]: x4bar = sp.symbols(xbarbm4^(+))
x5bar = sp.symbols(xbarbm5^(-))
x4bar, x5bar

[4]:
(

x̄(+)
4 , x̄(−)5

)
[5]: t = sp.symbols(t)

[6]: def lerp(one, two, t):
"""Linear intERPolation.

The parameter *t* is expected to be between 0 and 1.

"""
return (1 - t) * one + t * two

Boehm [Boe82] also mentions (on page 210) a peculiar algorithm to construct the spline segment. In a
first step, a linear interpolation between the start and end point is done, as well as a linear interpolation
between the two quadrangle points. The two resulting points are then interpolated again in a second
step. However, the last interpolation does not happen along a straight line, but along a parabola defined
by the expression 2t(1− t):

61

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/euclidean/bezier-non-uniform.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/euclidean/quadrangle.ipynb
utility.py
helper.py

[7]: p4 = NamedExpression(
pbm4 ,

lerp(lerp(x4, x5, t), lerp(x4bar, x5bar, t), 2 * t * (1 - t)))

This leads to a cubic polynomial. The following steps are very similar to what we did for cubic Bézier
curves (page 53).

Basis Polynomials

[8]: b = [p4.expr.expand().coeff(x) for x in (x4, x4bar, x5bar, x5)]
b

[8]:
[
−2t3 + 4t2 − 3t + 1, 2t3 − 4t2 + 2t, −2t3 + 2t2, 2t3 − 2t2 + t

]
[9]: plot_basis(*b, labels=(x4, x4bar, x5bar, x5))

0 1t

0

1

we
ig

ht

x4

x(+)
4

x()
5

x5

Basis Matrix

[10]: M_Q = NamedMatrix(
r {M_\text{Q}} ,
sp.Matrix([[c.coeff(x) for x in (x4, x4bar, x5bar, x5)]

for c in p4.as_poly(t).all_coeffs()]))
M_Q

[10]:

MQ =

2 −2 2 −2
−4 4 −2 2
3 −2 0 −1
−1 0 0 0

[11]: M_Q.I

[11]:

MQ
−1 =

0 0 0 −1
1
2

1
2 0 −1

0 − 1
2 −1 −1

−1 −1 −1 −1

62

Tangent Vectors

[12]: pd4 = p4.diff(t)

[13]: xd4 = pd4.evaluated_at(t, 0)
xd4

[13]: d
dt

p4

∣∣∣∣
t=0

= 2x̄(+)
4 − 3x4 + x5

[14]: xd5 = pd4.evaluated_at(t, 1)
xd5

[14]: d
dt

p4

∣∣∣∣
t=1

= −2x̄(−)5 − x4 + 3x5

This can be generalized to:

ẋ(+)
i = 2x̄(+)

i − 3xi + xi+1

ẋ(−)i = −
(

2x̄(−)i − 3xi + xi−1

)

Quadrangle to Hermite Control Values

[15]: M_QtoH = NamedMatrix(
r {M_\text{Q\toH}} ,
sp.Matrix([[expr.coeff(cv) for cv in [x4, x4bar, x5bar, x5]]

for expr in [
x4,
x5,
xd4.expr,
xd5.expr]]))

M_QtoH

[15]:

MQ→H =

1 0 0 0
0 0 0 1
−3 2 0 1
−1 0 −2 3

[16]: M_QtoH.I.pull_out(sp.S.One / 2)

[16]:

MQ→H
−1 =

1
2

2 0 0 0
3 −1 1 0
−1 3 0 −1
0 2 0 0

63

Quadrangle to Bézier Control Points

Since we already know the tangent vectors, it is easy to find the Bézier control points, as we have already
shown in the notebook about uniform Hermite splines (page 27).

[17]: x4tilde = NamedExpression(xtildebm4^(+) , x4 + xd4.expr / 3)
x4tilde

[17]:
x̃(+)

4 =
2x̄(+)

4
3

+
x5

3

[18]: x5tilde = NamedExpression(xtildebm5^(-) , x5 - xd5.expr / 3)
x5tilde

[18]:
x̃(−)5 =

2x̄(−)5
3

+
x4

3

[19]: M_QtoB = NamedMatrix(
r {M_\text{Q\toB}} ,
sp.Matrix([[expr.coeff(cv) for cv in (x4, x4bar, x5bar, x5)]

for expr in [
x4,
x4tilde.expr,
x5tilde.expr,
x5]]))

M_QtoB.pull_out(sp.S.One / 3)

[19]:

MQ→B =
1
3

3 0 0 0
0 2 0 1
1 0 2 0
0 0 0 3

[20]: M_QtoB.I.pull_out(sp.S.One / 2)

[20]:

MQ→B
−1 =

1
2

2 0 0 0
0 3 0 −1
−1 0 3 0
0 0 0 2

The inverse matrix can be used for converting from Bézier control points to quadrangle points:

[21]: NamedMatrix(
sp.Matrix([x4, x4bar, x5bar, x5]),
M_QtoB.I.expr * sp.Matrix([x4, x4tilde.name, x5tilde.name, x5]))

[21]:
x4

x̄(+)
4

x̄(−)5
x5

 =

x4

− x5
2 +

3x̃(+)
4
2

− x4
2 +

3x̃(−)5
2

x5

We can generalize the equations for the outgoing and incoming quadrangle points:

x̄(+)
i =

3
2

x̃(+)
i − 1

2
xi+1

x̄(−)i =
3
2

x̃(−)i − 1
2

xi−1

The two equations are also shown by Boehm [Boe82] on page 203.

64

Non-Uniform Parameterization

Just like cubic Bézier splines (page 59), the shape of a segment (i.e. the image31) is fully defined by its
four control points. Re-scaling the parameter does not change the shape, but it changes the speed and
therefore the tangent vectors.

[22]: t4, t5 = sp.symbols(t4:6)

[23]: p4nu = p4.subs(t, (t - t4) / (t5 - t4)).with_name(
r \boldsymbol{p}_\text{4,non-uniform})

[24]: pd4nu = p4nu.diff(t)

[25]: pd4nu.evaluated_at(t, t4)

[25]: d
dt

p4,non-uniform

∣∣∣∣
t=t4

=
2x̄(+)

4
−t4 + t5

− 3x4

−t4 + t5
+

x5

−t4 + t5

[26]: pd4nu.evaluated_at(t, t5)

[26]: d
dt

p4,non-uniform

∣∣∣∣
t=t5

= −
2x̄(−)5
−t4 + t5

− x4

−t4 + t5
+

3x5

−t4 + t5

This can be generalized to:

ẋ(+)
i,non-uniform =

2x̄(+)
i − 3xi + xi+1

∆i

ẋ(−)i,non-uniform = −
2x̄(−)i − 3xi + xi−1

∆i−1

. doc/euclidean/quadrangle.ipynb ends here.

2.8 Catmull–Rom Splines

What is nowadays known as Catmull–Rom spline is a specific member of a whole family of splines intro-
duced by Catmull and Rom [CR74]. That paper only describes uniform splines, but their definition can
be straightforwardly extended to the non-uniform case.

Contrary to popular belief, Overhauser splines – as presented by Overhauser [Ove68] – are not the same!

A Python implementation of Catmull–Rom splines is available in the class splines.CatmullRom
(page 184).

The following section was generated from doc/euclidean/catmull-rom-properties.ipynb .

Properties of Catmull–Rom Splines

Catmull andRom[CR74] present awhole class of splineswith awhole range of properties. Herewe only
consider one member of this class which is a cubic polynomial interpolating spline with C1 continuity
and local support. Nowadays, this specific case is typically simply referred to as Catmull–Rom spline.

This type of spline is very popular because they are very easy to use. Only a sequence of control points
has to be specified, the corresponding tangents are calculated automatically from the given points. Using

31 https://en.wikipedia.org/wiki/Image_(mathematics)

65

https://en.wikipedia.org/wiki/Image_(mathematics)
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/euclidean/quadrangle.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/euclidean/catmull-rom-properties.ipynb

those tangents, the spline can be implemented using cubicHermite splines (page 18). Alternatively, spline
values can be directly calculated with the Barry–Goldman algorithm (page 89).

To calculate the spline values between two control points, the preceding and the following control points
are needed as well. The tangent vector at any given control point can be calculated from this control
point, its predecessor and its successor. Since Catmull–Rom splines are C1 continuous, incoming and
outgoing tangent vectors are equal.

The following examples use the Python class splines.CatmullRom (page 184) to create both uniform and
non-uniform splines. Only closed splines are shown, other end conditions (page 114) can also be used,
but they are not specific to this type of spline.

[1]: import matplotlib.pyplot as plt
import numpy as np
np.set_printoptions(precision=4)

Apart from the splines (page 182) module …

[2]: import splines

… we also import a few helper functions from helper.py:

[3]: from helper import plot_spline_2d, plot_tangent_2d

Let’s choose a few points for an example:

[4]: points1 = [
(-1, -0.5),
(0, 2.3),
(1, 1),
(4, 1.3),
(3.8, -0.2),
(2.5, 0.1),

]

Without specifying any time values, we get a uniform spline:

[5]: s1 = splines.CatmullRom(points1, endconditions= closed)

[6]: fig, ax = plt.subplots()
plot_spline_2d(s1, ax=ax)

1 0 1 2 3 4

0.5

0.0

0.5

1.0

1.5

2.0

66

helper.py

Tangent Vectors

In the uniform case, the tangent vectors at any given control point are parallel to the line connecting the
preceding point and the following point. The tangent vector has the same orientation as that line but
only half its length. In other (more mathematical) words:

ẋi =
xi+1 − xi−1

2

This is illustrated for two control points in the following plot:

[7]: for idx, color in zip([2, 5], [purple , hotpink]):
plot_tangent_2d(

s1.evaluate(s1.grid[idx], 1),
s1.evaluate(s1.grid[idx]), color=color, ax=ax)

ax.plot(
*s1.evaluate([s1.grid[idx - 1], s1.grid[idx + 1]]).T,
-- , color=color, linewidth=2)

fig

[7]:

1 0 1 2 3 4

0.5

0.0

0.5

1.0

1.5

2.0

We can see here that each tangent vector is parallel to and has half the length of the line connecting the
preceding and the following vertex, just as promised.

However, this will not be true anymore if we are using non-uniform time instances:

[8]: times2 = 0, 1, 2.2, 3, 4, 4.5, 6

[9]: s2 = splines.CatmullRom(points1, grid=times2, endconditions= closed)

[10]: plot_spline_2d(s2, ax=ax)
for idx, color in zip([2, 5], [green , crimson]):

plot_tangent_2d(
s2.evaluate(s2.grid[idx], 1),
s2.evaluate(s2.grid[idx]), color=color, ax=ax)

fig

67

[10]:

1 0 1 2 3 4 5

0.5

0.0

0.5

1.0

1.5

2.0

2.5

In the non-uniform case, the equation for the tangent vector gets quite a bit more complicated:

ẋi =
(ti+1 − ti)

2(xi − xi−1) + (ti − ti−1)
2(xi+1 − xi)

(ti+1 − ti)(ti − ti−1)(ti+1 − ti−1)

The derivation of this equation is shown in a separate notebook (page 85).

Equivalently, this can be written as:

ẋi =
(ti+1 − ti)(xi − xi−1)

(ti − ti−1)(ti+1 − ti−1)
+

(ti − ti−1)(xi+1 − xi)

(ti+1 − ti)(ti+1 − ti−1)

Also equivalently, with vi =
xi+1−xi
ti+1−ti

, it can be written as:

ẋi =
(ti+1 − ti)vi−1 + (ti − ti−1)vi

(ti+1 − ti−1)

Wrong Tangent Vectors

Some sources provide a simpler equation which is different from the tangent vector of a Catmull–Rom
spline (except in the uniform case):

ẋi
?
=

vi−1 + vi
2

=
1
2

(
xi − xi−1

ti − ti−1
+

xi+1 − xi
ti+1 − ti

)
[11]: class MeanVelocity(splines.CatmullRom):

@staticmethod
def _calculate_tangent(points, times):

x_1, x0, x1 = np.asarray(points)
t_1, t0, t1 = times
v_1 = (x0 - x_1) / (t0 - t_1)
v0 = (x1 - x0) / (t1 - t0)
return (v_1 + v0) / 2

68

Until April 2023, Wikipedia32 showed yet a simpler equation. They mentioned that “this assumes uni-
form parameter spacing”, but since ti−1 and ti+1 appeared in the equation, it might be tempting to use
it for the non-uniform case as well. We’ll see below how that turns out.

The authors of the page don’t seem to have been quite sure about this equation, because it has changed
over time. This was shown until mid-202133:

ẋi
?
=

xi+1 − xi−1

ti+1 − ti−1

[12]: class Wikipedia1(splines.CatmullRom):

@staticmethod
def _calculate_tangent(points, times):

x_1, _, x1 = np.asarray(points)
t_1, _, t1 = times
return (x1 - x_1) / (t1 - t_1)

And this slight variation was shown since then34 until April 2023:

ẋi
?
=

1
2

xi+1 − xi−1

ti+1 − ti−1

[13]: class Wikipedia2(splines.CatmullRom):

@staticmethod
def _calculate_tangent(points, times):

x_1, _, x1 = np.asarray(points)
t_1, _, t1 = times
return (1/2) * (x1 - x_1) / (t1 - t_1)

The first one is correct in the uniform case (which the Wikipedia page assumes), but not in the general
non-uniform case, as we’ll see in a moment.

The second one is obviously wrong in the case where all intervals are of length 1 (i.e. ti+1 − ti = ti −
ti−1 = 1):

xi+1 − xi−1

4
6= xi+1 − xi−1

2
= ẋi

Since April 2023, the page is showing the correct equation for the uniform case35.

The X3D standard (version 3.3)36 even suggests to use different incoming and outgoing tangents, which
destroys C1 continuity!

ẋ(+)
i

?
=

(ti − ti−1)(xi+1 − xi−1)

ti+1 − ti−1

ẋ(−)i
?
=

(ti+1 − ti)(xi+1 − xi−1)

ti+1 − ti−1

32 https://en.wikipedia.org/wiki/Cubic_Hermite_spline Catmull–Rom_spline
33 https://web.archive.org/web/20210420082245/https://en.wikipedia.org/wiki/Cubic_Hermite_spline

Catmull–Rom_spline
34 https://web.archive.org/web/20210727071020/https://en.wikipedia.org/wiki/Cubic_Hermite_spline

Catmull–Rom_spline
35 https://web.archive.org/web/20230411124304/https://en.wikipedia.org/wiki/Cubic_Hermite_spline
36 https://www.web3d.org/documents/specifications/19775-1/V3.3/Part01/components/interp.html

HermiteSplineInterpolation

69

https://en.wikipedia.org/wiki/Cubic_Hermite_spline#Catmull–Rom_spline
https://web.archive.org/web/20210420082245/https://en.wikipedia.org/wiki/Cubic_Hermite_spline#Catmull–Rom_spline
https://web.archive.org/web/20210727071020/https://en.wikipedia.org/wiki/Cubic_Hermite_spline#Catmull–Rom_spline
https://web.archive.org/web/20230411124304/https://en.wikipedia.org/wiki/Cubic_Hermite_spline
https://www.web3d.org/documents/specifications/19775-1/V3.3/Part01/components/interp.html#HermiteSplineInterpolation

[14]: class X3D(splines.KochanekBartels):
We derive from KochanekBartels because the
incoming and outgoing tangents are different:
@staticmethod
def _calculate_tangents(points, times, _ignored):

x_1, _, x1 = np.asarray(points)
t_1, t0, t1 = times
incoming = (t1 - t0) * (x1 - x_1) / (t1 - t_1)
outgoing = (t0 - t_1) * (x1 - x_1) / (t1 - t_1)
return incoming, outgoing

To illustrate the different choices of tangent vectors, we use the vertex data from Lee [Lee89], figure 6:

[15]: points3 = [
(0, 0),
(10, 25),
(10, 24),
(11, 24.5),
(33, 25),

]

Deciding between “right” and “wrong” tangent vectors is surprisingly hard, becausemost of the options
look somewhat reasonable in most cases. However, we can try to use quite extreme vertex positions
and we can use centripetal parameterization (see below) and check if its guaranteed properties hold for
different choices of tangent vectors.

[16]: def plot_spline(cls, linestyle= - , **args):
alpha=0.5 => centripetal parameterization
spline = cls(points3, alpha=0.5)
plot_spline_2d(

spline, label=cls.__name__, chords=False,
marker=None, linestyle=linestyle, **args)

[17]: plot_spline(MeanVelocity, linestyle= :)
plot_spline(X3D, linestyle= -.)
plot_spline(Wikipedia1)
plot_spline(Wikipedia2, linestyle= --)
plot_spline(splines.CatmullRom, linewidth=3)
plt.axis([9, 13, 23.9, 25.6])
plt.legend();

9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0

24.00
24.25
24.50
24.75
25.00
25.25
25.50 MeanVelocity

X3D
Wikipedia1
Wikipedia2
CatmullRom

70

Aswe can immediately see, the tangents from X3D are utterly wrong and the first one fromWikipedia is
also quite obviously broken. The other two don’t look too bad, but they slightly overshoot, and according
to Yuksel et al. [YSK11] that is something that centripetal Catmull–Rom splines are guaranteed not to
do.

Again, to be fair to the Wikipedia article’s authors, they mentioned that uniform parameter spacing is
assumed, so their equation is not supposed to be used in this non-uniform context. The equation has
been changed in the meantime to avoid confusion.

Cusps and Self-Intersections

Uniform parametrization typically works very well if the (Euclidean) distances between consecutive
vertices are all similar. However, if the distances are very different, the shape of the spline often turns
out to be unexpected. Most notably, in extreme cases there might be even cusps or self-intersections
within a spline segment.

[18]: def plot_catmull_rom(*args, **kwargs):
plot_spline_2d(splines.CatmullRom(*args, endconditions= closed , **kwargs))

[19]: points4 = [
(0, 0),
(0, 0.5),
(1.5, 1.5),
(1.6, 1.5),
(3, 0.2),
(3, 0),

]

[20]: plot_catmull_rom(points4)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

We can try to compensate this by manually selecting some non-uniform time instances:

[21]: times4 = 0, 0.2, 0.9, 1, 3, 3.3, 4.5

[22]: plot_catmull_rom(points4, times4)

71

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.5

0.0

0.5

1.0

1.5

Time values can be chosen by trial and error, but there are also ways to choose the time values automat-
ically, as shown in the following sections.

Chordal Parameterization

One way to go about this is to measure the (Euclidean) distances between consecutive vertices (i.e. the
chordal lengths) and simply use those distances as time intervals:

[23]: distances = np.linalg.norm(np.diff(points4 + points4[:1], axis=0), axis=1)
distances

[23]: array([0.5 , 1.8028, 0.1 , 1.9105, 0.2 , 3.])

[24]: times5 = np.concatenate([[0], np.cumsum(distances)])
times5

[24]: array([0. , 0.5 , 2.3028, 2.4028, 4.3133, 4.5133, 7.5133])

[25]: plot_catmull_rom(points4, times5)

0 1 2 3

0.5

0.0

0.5

1.0

1.5

This makes the speed along the spline nearly constant, but the distance between the curve and its longer
chords can become quite huge.

72

Centripetal Parameterization

As a variation of the previous method, the square roots of the chordal lengths can be used to define the
time intervals [Lee89].

[26]: times6 = np.concatenate([[0], np.cumsum(np.sqrt(distances))])
times6

[26]: array([0. , 0.7071, 2.0498, 2.366 , 3.7482, 4.1954, 5.9275])

[27]: plot_catmull_rom(points4, times6)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

The curve takes its course much closer to the chords, but its speed is obviously far from constant.

Centripetal parameterization has the very nice property that it guarantees no cusps and no
self-intersections, as shown by Yuksel et al. [YSK11]. The curve is also guaranteed to never “move away”
from the successive vertex:

When centripetal parameterization is usedwith Catmull–Rom splines to define a path curve,
the direction of motion for the object following this path will always be towards the next
key-frame position.

---Yuksel et al. [YSK11], Section 7.2: “Path Curves”

Parameterized Parameterization

It turns out that the previous two parameterization schemes are just two special cases of a more general
scheme for obtaining time intervals between control points:

ti+1 = ti + |xi+1 − xi|α, with 0 ≤ α ≤ 1.

In the Python class splines.CatmullRom (page 184), the parameter alpha can be specified.

[28]: def plot_alpha(alpha, label):
s = splines.CatmullRom(points4, alpha=alpha, endconditions= closed)
plot_spline_2d(s, label=label)

[29]: plot_alpha(0, r $\alpha = 0$ (uniform))
plot_alpha(0.5, r $\alpha = 0.5$ (centripetal))

(continues on next page)

73

(continued from previous page)

plot_alpha(0.75, r $\alpha = 0.75$)
plot_alpha(1, r $\alpha = 1$ (chordal))
plt.legend(loc= center , numpoints=3);

1 0 1 2 3 4

0.5

0.0

0.5

1.0

1.5

= 0 (uniform)
= 0.5 (centripetal)
= 0.75
= 1 (chordal)

As can be seen here – and as Yuksel et al. [YSK11] demonstrate to be generally true – the uniform curve is
farthest away from short chords and closest to long chords. The chordal curve behaves contrarily: closest
to short chords and awkwardly far from long chords. The centripetal curve is closer to the uniform curve
for long chords and closer to the chordal curve for short chords, providing a very good compromise.

Any value between 0 and 1 can be chosen for α, but α = 1
2 (i.e. centripetal parameterization) stands out

because it is the only one of them that guarantees no cusps and self-intersections:

In this paper we prove that, for cubic Catmull–Rom curves, centripetal parameterization is
the only parameterization in this family that guarantees that the curves do not form cusps or
self-intersections within curve segments.

---Yuksel et al. [YSK11], abstract

[…] we mathematically prove that centripetal parameterization of Catmull–Rom curves
guarantees that the curve segments cannot form cusps or local self-intersections, while such
undesired features can be formed with all other possible parameterizations within this class.

---Yuksel et al. [YSK11], Section 1: “Introduction”

Cusps and self-intersections are very common with Catmull–Rom curves for most parame-
terization choices. In fact, as we will show here, the only parameterization choice that guar-
antees no cusps and self-intersections within curve segments is centripetal parameterization.

---Yuksel et al. [YSK11], Section 3: “Cusps and Self-Intersections”
. doc/euclidean/catmull-rom-properties.ipynb ends here.

The following section was generated from doc/euclidean/catmull-rom-uniform.ipynb .

Uniform Catmull–Rom Splines

Catmull and Rom [CR74] presented a class of splineswhich can be describedmathematically, in its most
generic form, with what is referred to as equation (1):

F(s) = ∑ xi(s)wi(s)
∑ wi(s)

,

where the part wi(s)/ ∑ wi(s) is called blending functions.

74

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/euclidean/catmull-rom-properties.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/euclidean/catmull-rom-uniform.ipynb

Since the blending functions presented above are, as of now, completely arbitrary we impose
some constraints in order to make them easier to use. We shall deal only with blending
functions that are zero outside of some given interval. Also we require that ∑ wi(s) does not
vanish for any s. We shall normalize wi(s) so that ∑ wi(s) = 1 for all s.

---Catmull and Rom [CR74], section 3, “Blending Functions”

The components of the equation are further constrained to produce an interpolating function:

Consider the following case: Let xi(s) be any function interpolating the points pi through
pi+k and let wi(s) be zero outside (si−1, si+k+1). The function F(s) defined in equation (1)
will thus be an interpolating function. Intuitively, this says that if all of the functions that
have an effect at a point, pass through the point, then the average of the functions will pass
through the point.

---Catmull and Rom [CR74], section 2: “The Model”

Typo Alert

The typo “pi through si+k” has been fixed in the quote above.

A polynomial of degree k that pass[e]s through k + 1 points will be used as x(s). In general
it will not pass through the other points. If the width of the interval in which wi(s) is non
zero is less than or equal to k + 2 then xi(s) will not affect F(s) outside the interpolation
interval. This means that F(s) will be an interpolating function. On the other hand if the
width of wi(s) is greater than k + 2 then xi(s) will have an effect on the curve outside the
interpolation interval. F(s) will then be an approximating function.

---Catmull and Rom [CR74], section 2: “The Model”

After limiting the scope of the paper to interpolating splines, it is further reduced to uniform splines:

[…] in the parametric space we can, without loss of generality, place sj = j.

---Catmull and Rom [CR74], section 2: “The Model”

Whether or not generality is lost, this means that the rest of the paper doesn’t give any hints on how
to construct non-uniform splines. For those who are interested nevertheless, we show how to do that
in the notebook about non-uniform Catmull–Rom splines (page 83) and once again in the notebook about the
Barry–Goldman algorithm (page 89).

After the aforementioned constraints and the definition of the term cardinal function …

Cardinal function: a function that is 1 at some knot, 0 at all other knots and can be anything
in between the other knots. It satisfies Fi(sj) = δij.

---Catmull and Rom [CR74], section 1: “Introduction”

… the gratuitously generic equation (1) is made a bit more concrete:

If in equation (1) we assume xi(s) to be polynomials of degree k then this equation can be
reduced to a much simpler form:

F(s) = ∑
j

pjCjk(s)

where the Cjk(s) are cardinal blending functions and j is the knot to which the cardinal func-
tion and the point belong and each Cjk(s) is a shifted version of C0,k(s). C0,k(s) is a function
of both the degree k of the polynomials and the blending functions w(s):

75

C0,k(s) =
k

∑
i=0

[i

∏
j=i−k

j 6=0

(
s
j
+ 1
)]

w(s + i)

In essence we see that for a polynomial case our cardinal functions are a blend of Lagrange
polynomials. When calculating C0,k(s), w(s) should be centered about k

2 .

---Catmull and Rom [CR74], section 4: “Calculating Cardinal Functions”

This looks like something we can work with, even though the blending function w(s) is still not defined.

[1]: import sympy as sp

We use t instead of s:

[2]: t = sp.symbols(t)

[3]: i, j, k = sp.symbols(i j k , integer=True)

[4]: w = sp.Function(w)

[5]: C0k = sp.Sum(
sp.Product(

sp.Piecewise((1, sp.Eq(j, 0)), ((t / j) + 1, True)),
(j, i - k, i)) * w(t + i),

(i, 0, k))
C0k

[5]: k

∑
i=0

w(i + t)
i

∏
j=i−k

{
1 for j = 0
1 + t

j otherwise

Blending Functions

Catmull and Rom [CR74] leave the choice of blending function to the reader. They show two plots
(figure 1 and figure 3) for a custom blending function stitched together from two Bézier curves, but they
don’t show the cardinal function nor an actual spline created from it.

The only other concrete suggestion is to use B-spline basis functions as blending functions. A quadratic
B-spline basis function is shown in figure 2 and both cardinal functions and example curves are shown
that utilize both quadratic and cubic B-spline basis functions (figures 4 through 7). No mathematical
description of B-spline basis functions is given, instead they refer to Gordon and Riesenfeld [GR74].
That paper provides a pair of equations (3.1 and 3.2) that can be used to recursively construct B-spline
basis functions. Simplified to the uniform case, this leads to the base case (i.e. degree zero) …

[6]: B0 = sp.Piecewise((0, t < i), (1, t < i + 1), (0, True))
B0

[6]:

0 for i > t
1 for t < i + 1
0 otherwise

… which can be used to obtain the linear (i.e. degree one) basis functions:

[7]: B1 = (t - i) * B0 + (i + 2 - t) * B0.subs(i, i + 1)

We can use one of them (where i = 0) as blending function:

76

[8]: w1 = B1.subs(i, 0)

With some helper functions from helper.py we can plot this.

[9]: from helper import plot_sympy, grid_lines

[10]: plot_sympy(w1, (t, -0.2, 2.2))
grid_lines([0, 1, 2], [0, 1])

0 1 2
0

1

The quadratic (i.e. degree two) basis functions can be obtained like this:

[11]: B2 = (t - i) / 2 * B1 + (i + 3 - t) / 2 * B1.subs(i, i + 1)

For our further calculations, we use the function with i = −1 as blending function:

[12]: w2 = B2.subs(i, -1)

[13]: plot_sympy(w2, (t, -1.2, 2.2))
grid_lines([-1, 0, 1, 2], [0, 1])

1 0 1 2
0

1

This should be the same function as shown by Catmull and Rom [CR74] in figure 2.

77

helper.py

Cardinal Functions

The first example curve in the paper (figure 5) is a cubic curve, constructed using a cardinal function
with k = 1 (i.e. using linear Lagrange interpolation) and a quadratic B-spline basis function (as shown
above) as blending function.

With the information so far, we can construct the cardinal function C0,1(t), using our quadratic B-spline
blending function w2 (which is, as required, centered about k

2):

[14]: C01 = C0k.subs(k, 1).replace(w, lambda x: w2.subs(t, x)).doit().simplify()
C01

[14]:

0 for t < −2
(t+1)(t+2)2

2 for t < −1

− 3t3

2 −
5t2

2 + 1 for t < 0
3t3

2 −
5t2

2 + 1 for t < 1
(1−t)(t−2)2

2 for t < 2
0 otherwise

[15]: plot_sympy(C01, (t, -2.2, 2.2))
grid_lines(range(-2, 3), [0, 1])

2 1 0 1 2

0

1

This should be the same function as shown by Catmull and Rom [CR74] in figure 4.

The paper does not show that, but we can also try to flip the respective degrees of Lagrange interpolation
and B-spline blending. In other words, we can set k = 2 to construct the cardinal function C0,2(t), this
time using the linear B-spline blending function w1 (which is also centered about k

2) leading to a total
degree of 3:

[16]: C02 = C0k.subs(k, 2).replace(w, lambda x: w1.subs(t, x)).doit().simplify()

And as it turns out, this is exactly the same thing!

[17]: assert C01 == C02

By the way, we come to the same conclusion in our notebook about the Barry–Goldman algorithm (page 89),
which means that this is also true in the non-uniform case.

Many authors nowadays, when using the term Catmull–Rom spline, mean the cubic spline created using
exactly this cardinal function.

78

Aswe have seen, this can be equivalently understood either as three linear interpolations (more exactly:
one interpolation and two extrapolations) followed by quadratic B-spline blending or as two overlap-
ping quadratic Lagrange interpolations followed by linear blending. The two equivalent approaches are
illustrated by means of animations in the notebook about non-uniform Catmull–Rom splines (page 88).

Example Plot

[18]: import matplotlib.pyplot as plt
import numpy as np

To quickly check how a spline segmentwould look likewhen using the cardinal functionwe just derived,
let’s define a few points …

[19]: vertices = np.array([
(-0.1, -0.5),
(0, 0),
(1, 0),
(0.5, 1),

])

… and plot F(t) (or F(s), as it has been called originally):

[20]: plt.scatter(*np.array([
sum([vertices[i] * C01.subs(t, s - i + 1) for i in range(4)])
for s in np.linspace(0, 1, 20)]).T)

plt.plot(*vertices.T, x:g);

0.0 0.2 0.4 0.6 0.8 1.0
0.50

0.25

0.00

0.25

0.50

0.75

1.00

For calculating more than one segment, and also for creating non-uniform Catmull–Rom splines, the
class splines.CatmullRom (page 184) can be used. For more plots, see the notebook about properties of Cat-
mull–Rom splines (page 65).

79

Basis Polynomials

The piecewise expression for the cardinal function is a bit unwieldy to work with, so let’s bring it into a
form we already know how to deal with.

We are splitting the piecewise expression into four separate pieces, each one to be evaluated at 0 ≤ t ≤ 1.
We are also reversing the order of the pieces, to match our intended control point order:

[21]: b_CR = sp.Matrix([
expr.subs(t, t + cond.args[1] - 1)
for expr, cond in C01.args[1:-1][::-1]]).T

b_CR.T

[21]:

− t(t−1)2

2
3t3

2 −
5t2

2 + 1

− 3(t−1)3

2 − 5(t−1)2

2 + 1
t2(t−1)

2

[22]: from helper import plot_basis

[23]: plot_basis(*b_CR, labels=sp.symbols(xbm_i-1 xbm_i xbm_i+1 xbm_i+2))

0 1t

0

1

we
ig

ht

xi 1
xi

xi + 1
xi + 2

For the following sections, we are using a few tools from utility.py:

[24]: from utility import NamedExpression, NamedMatrix

Basis Matrix

[25]: b_monomial = sp.Matrix([t**3, t**2, t, 1]).T
M_CR = NamedMatrix(r {M_\text{CR}} , 4, 4)
control_points = sp.Matrix(sp.symbols(xbm3:7))

As usual, we look at the fifth polynomial segment p4(t) (from x4 to x5), where 0 ≤ t ≤ 1. Later, we will
be able to generalize this to an arbitrary polynomial segment pi(t) (from xi to xi+1), where 0 ≤ t ≤ 1.

[26]: p4 = NamedExpression(pbm4 , b_monomial * M_CR.name * control_points)
p4

80

utility.py

[26]:

p4 =
[
t3 t2 t 1

]
MCR

x3
x4
x5
x6

From the basis polynomials and the control points, we can already calculate p4(t) …

[27]: p4.expr = b_CR.dot(control_points).expand().collect(t)
p4

[27]:
p4 = t3

(
− x3

2
+

3x4

2
− 3x5

2
+

x6

2

)
+ t2

(
x3 −

5x4

2
+ 2x5 −

x6

2

)
+ t
(
− x3

2
+

x5

2

)
+ x4

… and with a little bit of squinting, we can directly read off the coefficients of the basis matrix:

[28]: M_CR.expr = sp.Matrix([
[b.get(m, 0) for b in [

p4.expr.expand().coeff(cv).collect(t, evaluate=False)
for cv in control_points]]

for m in b_monomial])
M_CR.pull_out(sp.S.Half)

[28]:

MCR =
1
2

−1 3 −3 1
2 −5 4 −1
−1 0 1 0
0 2 0 0

Catmull and Rom [CR74] show this matrix in section 6.

In case you want to copy&paste it, here’s a plain text version:

[29]: print(_.expr)

(1/2)*Matrix([
[-1, 3, -3, 1],
[2, -5, 4, -1],
[-1, 0, 1, 0],
[0, 2, 0, 0]])

And, in case somebody needs it, its inverse looks like this:

[30]: M_CR.I

[30]:

MCR
−1 =

1 1 −1 1
0 0 0 1
1 1 1 1
6 4 2 1

[31]: print(_.expr)

Matrix([[1, 1, -1, 1], [0, 0, 0, 1], [1, 1, 1, 1], [6, 4, 2, 1]])

81

Tangent Vectors

To get the tangent vectors, we simply have to take the first derivative …

[32]: pd4 = p4.diff(t)

… and evaluate it at the beginning and the end of the segment:

[33]: start_tangent = pd4.evaluated_at(t, 0)
start_tangent

[33]: d
dt

p4

∣∣∣∣
t=0

= − x3

2
+

x5

2

[34]: end_tangent = pd4.evaluated_at(t, 1)
end_tangent

[34]: d
dt

p4

∣∣∣∣
t=1

= − x4

2
+

x6

2

These two expressions can be generalized to – as already shown in the notebook about Catmull–Rom prop-
erties (page 67):

ẋi =
xi+1 − xi−1

2

Using Bézier Segments

The above equation for the tangent vectors can be used to construct Hermite splines (page 18) or, after
dividing them by 3, to obtain the control points for cubic Bézier spline segments (page 55):

x̃(+)
i = xi +

ẋi
3

= xi +
xi+1 − xi−1

6

x̃(−)i = xi −
ẋi
3

= xi −
xi+1 − xi−1

6

[35]: x4, x5 = control_points[1:3]

[36]: x4tilde = x4 + start_tangent.expr / 3
x4tilde

[36]: − x3

6
+ x4 +

x5

6

[37]: x5tilde = x5 - end_tangent.expr / 3
x5tilde

[37]: x4

6
+ x5 −

x6

6

82

Using Quadrangle Interpolation

Remember the notebook about quadrangle interpolation (page 61)? It showed us how to calculate the quad-
rangle points given the Bézier control points:

x̄(+)
i =

3
2

x̃(+)
i − 1

2
xi+1

x̄(−)i =
3
2

x̃(−)i − 1
2

xi−1

[38]: x4bar = 3 * x4tilde / 2 - x5 / 2
x4bar

[38]: − x3

4
+

3x4

2
− x5

4

[39]: x5bar = 3 * x5tilde / 2 - x4 / 2
x5bar

[39]: − x4

4
+

3x5

2
− x6

4

Generalizing these expressions and juggling the terms around a bit, we get

x̄(+)
i = x̄(−)i = xi −

(xi+1 − xi) + (xi−1 − xi)

4
.

. doc/euclidean/catmull-rom-uniform.ipynb ends here.

The following section was generated from doc/euclidean/catmull-rom-non-uniform.ipynb .

Non-Uniform Catmull–Rom Splines

Catmull and Rom [CR74] describe only the uniform case (page 74), but it is straightforward to extend
their method to non-uniform splines.

The method creates three linear interpolations (and extrapolations) between neighboring pairs of the
four relevant control points and then blends the three resulting points with a quadratic B-spline basis
function.

As we have seen in the notebook about uniform Catmull–Rom splines (page 78) and as we will again see in
the notebook about the Barry–Goldman algorithm (page 92), the respective degrees can be swapped. This
means that equivalently, two (overlapping) quadratic Lagrange interpolations can be used, followed by
linearly blending the two resulting points.

Since the latter is both easier to implement and easier to wrap one’s head around, we’ll use it in the
following derivations.

Wewill derive the tangent vectors (page 85) at the segment boundaries, whichwill later serve as a starting
point for deriving non-uniform Kochanek–Bartels splines (page 109). See the notebook about the Barry–Gold-
man algorithm (page 89) for an alternative (but closely related) derivation.

[1]: import sympy as sp
sp.init_printing()

As usual, we look at the fifth polynomial segment p4(t) from x4 to x5, where t4 ≤ t ≤ t5. Later, we will
generalize this to an arbitrary polynomial segment pi(t) from xi to xi+1, where ti ≤ t ≤ ti+1.

[2]: x3, x4, x5, x6 = sp.symbols(xbm3:7)

83

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/euclidean/catmull-rom-uniform.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/euclidean/catmull-rom-non-uniform.ipynb

[3]: t, t3, t4, t5, t6 = sp.symbols(t t3:7)

We use some tools from utility.py:

[4]: from utility import NamedExpression, NamedMatrix

As shown in the notebook about Lagrange interpolation (page 6), it can be implemented using Neville’s
algorithm:

[5]: def lerp(xs, ts, t):
"""Linear interpolation.

Returns the interpolated value at time *t*,
given the two values *xs* at times *ts*.

"""
x_begin, x_end = xs
t_begin, t_end = ts
return (x_begin * (t_end - t) + x_end * (t - t_begin)) / (t_end - t_begin)

[6]: def neville(xs, ts, t):
"""Lagrange interpolation using Neville s algorithm.

Returns the interpolated value at time *t*,
given the values *xs* at times *ts*.

"""
if len(xs) != len(ts):

raise ValueError(xs and ts must have the same length)
while len(xs) > 1:

step = len(ts) - len(xs) + 1
xs = [

lerp(*args, t)
for args in zip(zip(xs, xs[1:]), zip(ts, ts[step:]))]

return xs[0]

Alternatively, sympy.interpolate()37 could be used.

We use two overlapping quadratic Lagrange interpolations followed by linear blending:

[7]: p4 = NamedExpression(
pbm4 ,

lerp([
neville([x3, x4, x5], [t3, t4, t5], t),
neville([x4, x5, x6], [t4, t5, t6], t),

], [t4, t5], t))

Note

Since the two invocations of Neville’s algorithm overlap, some values that are used by both are un-
necessarily computed by both. It would be more efficient to calculate each of these values only once.

The Barry–Goldman algorithm (page 89) avoids this repeated computation.

37 https://docs.sympy.org/latest/modules/polys/reference.html sympy.polys.polyfuncs.interpolate

84

utility.py
https://docs.sympy.org/latest/modules/polys/reference.html#sympy.polys.polyfuncs.interpolate

But here, since we are using symbolic expressions, this doesn’t really matter because the redundant
expressions should be simplified away by SymPy.

The following expressions can be simplified by introducing a few new symbols ∆i:

[8]: delta3, delta4, delta5 = sp.symbols(Delta3:6)
deltas = {

t4 - t3: delta3,
t5 - t4: delta4,
t6 - t5: delta5,
t5 - t3: delta3 + delta4,
t6 - t4: delta4 + delta5,
t6 - t3: delta3 + delta4 + delta5,
A few special cases that SymPy has a hard time resolving:
t4 + t4 - t3: t4 + delta3,
t6 + t6 - t3: t6 + delta3 + delta4 + delta5,

}

Tangent Vectors

To get the tangent vectors at the control points, we just have to take the first derivative …

[9]: pd4 = p4.diff(t)

… and evaluate it at t4 and t5:

[10]: start_tangent = pd4.evaluated_at(t, t4)
start_tangent.subs(deltas).simplify()

[10]: d
dt

p4

∣∣∣∣
t=t4

=
−∆2

3x4 + ∆2
3x5 − ∆2

4x3 + ∆2
4x4

∆3∆4 (∆3 + ∆4)

[11]: end_tangent = pd4.evaluated_at(t, t5)
end_tangent.subs(deltas).simplify()

[11]: d
dt

p4

∣∣∣∣
t=t5

=
∆2

4 (−x5 + x6) + ∆2
5 (−x4 + x5)

∆4∆5 (∆4 + ∆5)

Both results lead to the same general expression (which is expected, since the incoming and outgoing
tangents are supposed to be equal):

ẋi =
(ti+1 − ti)

2(xi − xi−1) + (ti − ti−1)
2(xi+1 − xi)

(ti+1 − ti)(ti − ti−1)(ti+1 − ti−1)

=
∆i

2(xi − xi−1) + ∆i−1
2(xi+1 − xi)

∆i∆i−1(∆i + ∆i−1)

Equivalently, this can be written as:

ẋi =
(ti+1 − ti)(xi − xi−1)

(ti − ti−1)(ti+1 − ti−1)
+

(ti − ti−1)(xi+1 − xi)

(ti+1 − ti)(ti+1 − ti−1)

=
∆i(xi − xi−1)

∆i−1(∆i + ∆i−1)
+

∆i−1(xi+1 − xi)

∆i(∆i + ∆i−1)

85

An alternative (but very similar) way to derive these tangent vectors is shown in the notebook about the
Barry–Goldman algorithm (page 97).

And there is yet anotherway to calculate the tangents, without even needing to obtain a cubic polynomial
and its derivative: Since we are using a linear blend of two quadratic polynomials, we know that at the
beginning (t = t4) only the first quadratic polynomial has an influence and at the end (t = t5) only the
second quadratic polynomial is relevant. Therefore, to determine the tangent vector at the beginning of
the segment, it is sufficient to get the derivative of the first quadratic polynomial.

[12]: first_quadratic = neville([x3, x4, x5], [t3, t4, t5], t)

[13]: sp.degree(first_quadratic, t)

[13]: 2

[14]: first_quadratic.diff(t).subs(t, t4)

[14]: (−t3+t4)(−x4+x5)
−t4+t5

+ (−t4+t5)(−x3+x4)
−t3+t4

−t3 + t5

This can be written as (which is sometimes called the standard three-point difference formula):

ẋi =
∆ivi−1 + ∆i−1vi

∆i−1 + ∆i
,

with ∆i = ti+1 − ti and vi =
xi+1−xi

∆i
.

de Boor [dB78] calls this piecewise cubic Bessel interpolation, and it has also been called Bessel tangent
method, Overhauser method and Bessel–Overhauser splines.

Note

Even though this formula is commonly associated with the nameOverhauser, it does not describe the
tangents of Overhauser splines as presented by Overhauser [Ove68].

Long story short, it’s the same as we had above:

[15]: assert sp.simplify(_ - start_tangent.expr) == 0

The first derivative of the second quadratic polynomial can be used to get the tangent vector at the end
of the segment.

[16]: second_quadratic = neville([x4, x5, x6], [t4, t5, t6], t)
second_quadratic.diff(t).subs(t, t5)

[16]: (−t4+t5)(−x5+x6)
−t5+t6

+ (−t5+t6)(−x4+x5)
−t4+t5

−t4 + t6

[17]: assert sp.simplify(_ - end_tangent.expr) == 0

You might encounter yet another way to write the equation for ẋ4 (e.g. at https://stackoverflow.
com/a/23980479/) …

[18]: (x4 - x3) / (t4 - t3) - (x5 - x3) / (t5 - t3) + (x5 - x4) / (t5 - t4)

[18]: −x4 + x5

−t4 + t5
− −x3 + x5

−t3 + t5
+
−x3 + x4

−t3 + t4

86

https://stackoverflow.com/a/23980479/
https://stackoverflow.com/a/23980479/

… but again, this is equivalent to the equation shown above:

[19]: assert sp.simplify(_ - start_tangent.expr) == 0

Using Non-Uniform Bézier Segments

Similar to the uniform case (page 82), the above equation for the tangent vectors can be used to construct
non-uniformHermite splines (page 18) or, aftermultiplying themwith the appropriate parameter interval
and dividing them by 3, to obtain the two additional control points for non-uniform cubic Bézier spline
segments (page 61):

x̃(+)
i = xi +

∆i ẋi
3

= xi +
∆i
3

∆ivi−1 + ∆i−1vi
∆i−1 + ∆i

= xi +
∆i

2(xi − xi−1)

3∆i−1(∆i + ∆i−1)
+

∆i−1(xi+1 − xi)

3(∆i + ∆i−1)

x̃(−)i = xi −
∆i−1 ẋi

3

= xi −
∆i−1

3
∆ivi−1 + ∆i−1vi

∆i−1 + ∆i

= xi −
∆i(xi − xi−1)

3(∆i + ∆i−1)
− ∆i−1

2(xi+1 − xi)

3∆i(∆i + ∆i−1)

This is again using ∆i = ti+1 − ti and vi =
xi+1−xi

∆i
.

[20]: x4tilde = x4 + (t5 - t4) * start_tangent.expr / 3

[21]: x5tilde = x5 - (t5 - t4) * end_tangent.expr / 3

Using Non-Uniform Quadrangle Interpolation

Just like in the uniform case (page 83), we calculate the quadrangle points from the Bézier control points,
as shown in the notebook about quadrangle interpolation (page 61):

x̄(+)
i =

3
2

x̃(+)
i − 1

2
xi+1

x̄(−)i =
3
2

x̃(−)i − 1
2

xi−1

[22]: x4bar = 3 * x4tilde / 2 - x5 / 2

[23]: terms4 = sp.collect(x4bar.expand(), [x3, x4, x5], evaluate=False)

Some manual rewriting leads to this expression:

[24]: sp.factor(terms4[x4] + terms4[x5] + terms4[x3]) * x4 - (
sp.factor(-terms4[x5]) * (x5 - x4) +
sp.factor(-terms4[x3]) * (x3 - x4))

87

[24]:
x4 −

(t4 − t5) (−x4 + x5)

2 (t3 − t5)
− (t4 − t5)

2 (x3 − x4)

2 (t3 − t4) (t3 − t5)

We should make sure that our re-written expression is actually the same as the one we started from:

[25]: assert sp.simplify(_ - x4bar) == 0

Now the same for the incoming quadrangle point:

[26]: x5bar = 3 * x5tilde / 2 - x4 / 2

[27]: terms5 = sp.collect(x5bar.expand(), [x4, x5, x6], evaluate=False)

[28]: sp.factor(terms5[x5] + terms5[x6] + terms5[x4]) * x5 - (
sp.factor(-terms5[x6]) * (x6 - x5) +
sp.factor(-terms5[x4]) * (x4 - x5))

[28]:
x5 −

(t4 − t5)
2 (−x5 + x6)

2 (t4 − t6) (t5 − t6)
− (t4 − t5) (x4 − x5)

2 (t4 − t6)

[29]: assert sp.simplify(_ - x5bar) == 0

The above expressions can be generalized to (as always with ∆i = ti+1 − ti):

x̄(+)
i = xi −

∆i
2(∆i−1 + ∆i)

(
(xi+1 − xi) +

∆i
∆i−1

(xi−1 − xi)

)
x̄(−)i = xi −

∆i−1

2(∆i−1 + ∆i)

(
∆i−1

∆i
(xi+1 − xi) + (xi−1 − xi)

)

Animation

To illustrate what two quadratic Lagrange interpolations followed by linear blending might look like,
we can generate an animation by means of the file catmull_rom.py, with some help from helper.py:

[30]: from catmull_rom import animation_2_1, animation_1_2
from helper import show_animation

[31]: vertices = [
(1, 0),
(0.5, 1),
(6, 2),
(5, 0),

]

[32]: times = [
0,
1,
6,
8,

]

[33]: show_animation(animation_2_1(vertices, times))

88

catmull_rom.py
helper.py

Animations can only be shown in HTML output, sorry!

In the beginning of this notebook, we claimed that two quadratic interpolations followed by linear blend-
ing are easier to understand. To prove this, let’s have a look at what three linear interpolations (and
extrapolations) followed by quadratic B-spline blending would look like:

[34]: show_animation(animation_1_2(vertices, times))

Animations can only be shown in HTML output, sorry!

Would you agree that this is less straightforward?

If you would rather replace the quadratic B-spline basis function with a bunch of linear interpolations
(using De Boor’s algorithm), take a look at the notebook about the Barry–Goldman algorithm (page 97).
. doc/euclidean/catmull-rom-non-uniform.ipynb ends here.

The following section was generated from doc/euclidean/catmull-rom-barry-goldman.ipynb .

Barry–Goldman Algorithm

The Barry–Goldman algorithm – named after Barry andGoldman [BG88] – can be used to calculate values
of non-uniform Catmull–Rom splines (page 83). We have also applied this algorithm to rotation splines
(page 167).

Catmull and Rom [CR74] describe “a class of local interpolating splines” and Barry and Goldman
[BG88] describe “a recursive evaluation algorithm for a class of Catmull–Rom splines”, by which they
mean a sub-class of the original class, which only contains splines generated from a combination of
Lagrange interpolation (page 6) and B-spline blending:

In particular, they observed that certain choices led to interpolatory curves. Although Cat-
mull and Rom discussed a more general case, we will restrict our attention to an impor-
tant class of Catmull–Rom splines obtained by combining B-spline basis functions and La-
grange interpolating polynomials. […] They are piecewise polynomial, have local support,
are invariant under affine transformations, and have certain differentiability and interpola-
tory properties.

---Barry and Goldman [BG88], section 1: “Introduction”

The algorithm can be set up to construct curves of arbitrary degree (given enough vertices and their
parameter values), but here we only take a look at the cubic case (using four vertices), which seems to
be what most people mean by the term Catmull–Rom splines.

The algorithm is a combination of two sub-algorithms:

The Catmull–Rom evaluation algorithm is constructed by combining the de Boor algorithm
for evaluating B-spline curveswithNeville’s algorithm for evaluating Lagrange polynomials.

---Barry and Goldman [BG88], abstract

Combining the two will lead to a multi-stage algorithm, where each stage consists of only linear inter-
polations (and extrapolations).

We will use the algorithm here to derive an expression for the tangent vectors (page 97), which will show
that the algorithm indeed generates non-uniform Catmull–Rom splines (page 85).

89

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/euclidean/catmull-rom-non-uniform.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/euclidean/catmull-rom-barry-goldman.ipynb

Triangular Schemes

Barry and Goldman [BG88] illustrate the presented algorithms using triangular evaluation patterns,
which we will use here in a very similar form.

As an example, let’s look at the most basic building block: linear interpolation between two given points
(in this case x4 and x5 with corresponding parameter values t4 and t5, respectively):

p4,5
t5−t
t5−t4

t−t4
t5−t4

x4 x5

The values at the base of the triangle are known, and the triangular scheme shows how the value at the
apex can be calculated from them.

In this example, to obtain the linear polynomial p4,5 one has to add x4, weighted by the factor shown
next to it (t5−t

t5−t4
), and x5, weighted by the factor next to it (t−t4

t5−t4
).

The parameter t can be chosen arbitrarily, but in this example we are mostly interested in the range
t4 ≤ t ≤ t5. If the parameter value is outside this range, the process is more appropriately called
extrapolation instead of interpolation. Since we will need linear interpolation (and extrapolation) quite
a few times, let’s define a helper function:

[1]: def lerp(xs, ts, t):
"""Linear interpolation.

Returns the interpolated value at time *t*,
given the two values *xs* at times *ts*.

"""
x_begin, x_end = xs
t_begin, t_end = ts
return (x_begin * (t_end - t) + x_end * (t - t_begin)) / (t_end - t_begin)

Neville’s Algorithm

Wehave already seen this algorithm in our notebook about Lagrange interpolation (page 10), wherewe have
shown the triangular scheme for the cubic case – which is also shown by Barry and Goldman [BG88] in
figure 2. In the quadratic case, it looks like this:

p3,4,5
t5−t
t5−t3

t−t3
t5−t3

p3,4 p4,5
t4−t
t4−t3

t−t3
t4−t3

t5−t
t5−t4

t−t4
t5−t4

x3 x4 x5

[2]: import matplotlib.pyplot as plt
import numpy as np

Let’s try to plot this for three points:

[3]: points = np.array([
(0, 0),
(0.5, 2),
(3, 0),

])

90

In the following example plots we show the uniform case (with t3 = 3, t4 = 4 and t5 = 5), but don’t
worry, the algorithm works just as well for arbitrary non-uniform time values.

[4]: plot_times = np.linspace(4, 5, 30)

[5]: plt.scatter(*np.array([
lerp(

[lerp(points[:2], [3, 4], t), lerp(points[1:], [4, 5], t)],
[3, 5], t)

for t in plot_times]).T)
plt.plot(*points.T, x:g)
plt.axis(equal);

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.5

1.0

1.5

2.0

Note that the quadratic curve is defined by three points but we are only evaluating it between two of
them (for 4 ≤ t ≤ 5).

De Boor’s Algorithm

This algorithm [dB72] can be used to calculate B-spline basis functions.

The quadratic case looks like this:

p3,4,5
t5−t
t5−t4

t−t4
t5−t4

p3,4 p4,5
t5−t
t5−t3

t−t3
t5−t3

t6−t
t6−t4

t−t4
t6−t4

x3 x4 x5

The cubic case is shown by Barry and Goldman [BG88] in figure 1.

[6]: plt.scatter(*np.array([
lerp(

[lerp(points[:2], [3, 5], t), lerp(points[1:], [4, 6], t)],
[4, 5], t)

for t in plot_times]).T)
plt.plot(*points.T, x:g)
plt.axis(equal);

91

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.5

1.0

1.5

2.0

Combining Both Algorithms

Catmull and Rom [CR74] show (in figure 5) an example where linear interpolation is followed by
quadratic B-spline blending to create a cubic curve.

We can re-create this example with the building blocks from above:

• At the base of the triangle, we put four known vertices.

• Consecutive pairs of these vertices form three linear interpolations (and extrapolations), resulting
in three interpolated (and extrapolated) values.

• On top of these three values, we arrange a quadratic instance of de Boor’s algorithm (as shown
above).

This culminates in the final value of the spline (given an appropriate parameter value t) at the apex of
the triangle, which looks like this:

p3,4,5,6
t5−t
t5−t4

t−t4
t5−t4

p3,4,5 p4,5,6
t5−t
t5−t3

t−t3
t5−t3

t6−t
t6−t4

t−t4
t6−t4

p3,4 p4,5 p5,6
t4−t
t4−t3

t−t3
t4−t3

t5−t
t5−t4

t−t4
t5−t4

t6−t
t6−t5

t−t5
t6−t5

x3 x4 x5 x6

Here we are considering the fifth spline segment p3,4,5,6(t) (represented at the apex of the triangle) from
x4 to x5 (to be found at the base of the triangle) which corresponds to the parameter range t4 ≤ t ≤ t5.
To calculate the values in this segment, we also need to know the preceding control point x3 (at the
bottom left) and the following control point x6 (at the bottom right). But not only their positions are
relevant, we also need the corresponding parameter values t3 and t6, respectively.

This same triangular scheme is also shown by Yuksel et al. [YSK11] in figure 3, except that here we
shifted the indices by +3.

Anotherway to construct a cubic curvewith this algorithmwould be to swap the degrees of interpolation
and blending, in other words:

92

• Instead of three linear interpolations (and extrapolations), apply two overlapping quadratic La-
grange interpolations using Neville’s algorithm (as shown above) to x3, x4, x5 and x4, x5, x6, re-
spectively. Note that the interpolation of x4 and x5 appears in both triangles but has to be calculated
only once – see also figures 3 and 4 by Barry and Goldman [BG88].

• This will occupy the lower two stages of the triangle, yielding two interpolated values.

• Those two values are then linearly blended in the final stage.

Readers of the notebook about uniform Catmull–Rom splines (page 74) may already suspect that, for others
it might be a revelation: both ways lead to exactly the same triangular scheme and therefore they are
equivalent!

The same scheme, but only for the uniform case, is also shown by Barry and Goldman [BG88] in figure
7, and they casually mention the equivalent cases (with m being the degree of Lagrange interpolation
and n being the degree of the B-spline basis functions):

Note too from Figure 7 that the case n = 1, m = 2 […] is identical to the case n = 2, m = 1
[…]

---Barry and Goldman [BG88], section 3: “Examples”

Not an Overhauser Spline

Equally casually, they mention:

Finally, the particular case here is also an Overhauser spline [Ove68].

---Barry and Goldman [BG88], section 3: “Examples”

This is not true. Overhauser splines – as described byOverhauser [Ove68] – don’t provide a choice of
parameter values. The parameter values are determined by the Euclidean distances between control
points, similar, but not quite identical to chordal parameterization (page 72). Calculating a value of a
Catmull–Rom spline doesn’t involve calculating any distances.

For completeness’ sake, there are two more combinations that lead to cubic splines, but they have their
limitations:

• Cubic Lagrange interpolation, followed by no blending at all, which leads to a cubic spline that’s
not C1 continuous (only C0), as shown by Barry and Goldman [BG88] in figure 8.

• No interpolation at all, followed by cubic B-spline blending, which leads to an approximating
spline (instead of an interpolating spline), as shown by Barry and Goldman [BG88] in figure 5.

Note

Here we are using the time instances of the Lagrange interpolation also as B-spline knots. Barry and
Goldman [BG88] show amore generic formulation of the algorithmwith separate parameters si and
ti in equation (9).

93

Step by Step

The triangular figure above looks more complicated than it really is. It’s just a bunch of linear in-
terpolations and extrapolations.

Let’s go through the figure above, piece by piece.

[7]: import sympy as sp

[8]: t = sp.symbols(t)

[9]: x3, x4, x5, x6 = sp.symbols(xbm3:7)

[10]: t3, t4, t5, t6 = sp.symbols(t3:7)

We use some custom SymPy-based tools from utility.py:

[11]: from utility import NamedExpression, NamedMatrix

First Stage

In the center of the bottom row, there is a straightforward linear interpolation from x4 to x5 within the
interval from t4 to t5.

[12]: p45 = NamedExpression(pbm_4,5 , lerp([x4, x5], [t4, t5], t))
p45

[12]:
p4,5 =

x4 (−t + t5) + x5 (t− t4)

−t4 + t5

Obviously, this starts at:

[13]: p45.evaluated_at(t, t4)

[13]: p4,5

∣∣∣
t=t4

= x4

… and ends at:

[14]: p45.evaluated_at(t, t5)

[14]: p4,5

∣∣∣
t=t5

= x5

The bottom left of the triangle looks very similar, with a linear interpolation from x3 to x4 within the
interval from t3 to t4.

[15]: p34 = NamedExpression(pbm_3,4 , lerp([x3, x4], [t3, t4], t))
p34

[15]:
p3,4 =

x3 (−t + t4) + x4 (t− t3)

−t3 + t4

However, that’s not the parameter range we are interested in! We are interested in the range from t4 to
t5. Therefore, this is not actually an interpolation between x3 and x4, but rather a linear extrapolation
starting at x4 …

[16]: p34.evaluated_at(t, t4)

94

utility.py

[16]: p3,4

∣∣∣
t=t4

= x4

… and ending at some extrapolated point beyond x4:

[17]: p34.evaluated_at(t, t5)

[17]:
p3,4

∣∣∣
t=t5

=
x3 (t4 − t5) + x4 (−t3 + t5)

−t3 + t4

Similarly, at the bottom right of the triangle there isn’t a linear interpolation from x5 to x6, but rather a
linear extrapolation that just reaches x5 at the end of the parameter interval (i.e. at t = t5).

[18]: p56 = NamedExpression(pbm_5,6 , lerp([x5, x6], [t5, t6], t))
p56

[18]:
p5,6 =

x5 (−t + t6) + x6 (t− t5)

−t5 + t6

[19]: p56.evaluated_at(t, t4)

[19]:
p5,6

∣∣∣
t=t4

=
x5 (−t4 + t6) + x6 (t4 − t5)

−t5 + t6

[20]: p56.evaluated_at(t, t5)

[20]: p5,6

∣∣∣
t=t5

= x5

Second Stage

The second stage of the algorithm involves linear interpolations of the results of the previous stage.

[21]: p345 = NamedExpression(pbm_3,4,5 , lerp([p34.name, p45.name], [t3, t5], t))
p345

[21]:
p3,4,5 =

p3,4 (−t + t5) + p4,5 (t− t3)

−t3 + t5

[22]: p456 = NamedExpression(pbm_4,5,6 , lerp([p45.name, p56.name], [t4, t6], t))
p456

[22]:
p4,5,6 =

p4,5 (−t + t6) + p5,6 (t− t4)

−t4 + t6

Those interpolations are defined over a parameter range from t3 to t5 and from t4 to t6, respectively. In
each case, we are only interested in a sub-range, namely from t4 to t5.

These are the start and end points at t4 and t5:

[23]: p345.evaluated_at(t, t4, symbols=[p34, p45])

[23]:

p3,4,5

∣∣∣
t=t4

=
p3,4

∣∣∣
t=t4

(−t4 + t5) + p4,5

∣∣∣
t=t4

(−t3 + t4)

−t3 + t5

[24]: p345.evaluated_at(t, t5, symbols=[p34, p45])

[24]: p3,4,5

∣∣∣
t=t5

= p4,5

∣∣∣
t=t5

95

[25]: p456.evaluated_at(t, t4, symbols=[p45, p56])

[25]: p4,5,6

∣∣∣
t=t4

= p4,5

∣∣∣
t=t4

[26]: p456.evaluated_at(t, t5, symbols=[p45, p56])

[26]:

p4,5,6

∣∣∣
t=t5

=
p4,5

∣∣∣
t=t5

(−t5 + t6) + p5,6

∣∣∣
t=t5

(−t4 + t5)

−t4 + t6

Third Stage

The last step is quite simple:

[27]: p3456 = NamedExpression(
pbm_3,4,5,6 ,

lerp([p345.name, p456.name], [t4, t5], t))
p3456

[27]:
p3,4,5,6 =

p3,4,5 (−t + t5) + p4,5,6 (t− t4)

−t4 + t5

This time, the interpolation interval is exactly the one we are interested in.

To get the final result, we just have to combine all the above expressions:

[28]: p3456 = p3456.subs_symbols(p345, p456, p34, p45, p56).simplify()

This expression is quite unwieldy, so let’s not even look at it.

[29]: #p3456

Apart from checking whether it’s really cubic …

[30]: sp.degree(p3456.expr, t)

[30]: 3

… and whether it’s really interpolating …

[31]: p3456.evaluated_at(t, t4).simplify()

[31]: p3,4,5,6

∣∣∣
t=t4

= x4

[32]: p3456.evaluated_at(t, t5).simplify()

[32]: p3,4,5,6

∣∣∣
t=t5

= x5

… the only thing left to do is to check its …

96

Tangent Vectors

To get the tangent vectors at the control points, we just have to take the first derivative …

[33]: pd3456 = p3456.diff(t)

… and evaluate it at t4 and t5:

[34]: pd3456.evaluated_at(t, t4).simplify().simplify()

[34]: d
dt

p3,4,5,6

∣∣∣∣
t=t4

=
(t3 − t4)

2 (x4 − x5) + (t4 − t5)
2 (x3 − x4)

(t3 − t4) (t3 − t5) (t4 − t5)

[35]: pd3456.evaluated_at(t, t5).simplify()

[35]: d
dt

p3,4,5,6

∣∣∣∣
t=t5

=
(t4 − t5)

2 (x5 − x6) + (t5 − t6)
2 (x4 − x5)

(t4 − t5) (t4 − t6) (t5 − t6)

If all went well, this should be identical to the result in the notebook about non-uniform Catmull–Rom splines
(page 85). As we have mentioned there, it isn’t even necessary to calculate the last interpolation to get
the tangent vectors. At the beginning of the interval (t = t4), only the first quadratic polynomial p3,4,5(t)
contributes to the final result, while the other one has aweight of zero. At the end of the interval (t = t5),
only p4,5,6(t) is relevant. Therefore, we can simply take their tangent vectors at t4 and t5, respectively,
and we get the same result:

[36]: p345.subs_symbols(p34, p45).diff(t).evaluated_at(t, t4).simplify()

[36]: d
dt

p3,4,5

∣∣∣∣
t=t4

=
(t3 − t4)

2 (x4 − x5) + (t4 − t5)
2 (x3 − x4)

(t3 − t4) (t3 − t5) (t4 − t5)

[37]: p456.subs_symbols(p45, p56).diff(t).evaluated_at(t, t5).simplify()

[37]: d
dt

p4,5,6

∣∣∣∣
t=t5

=
(t4 − t5)

2 (x5 − x6) + (t5 − t6)
2 (x4 − x5)

(t4 − t5) (t4 − t6) (t5 − t6)

Animation

The linear interpolations (and extrapolations) of this algorithm can be shown graphically. By means
of the file barry_goldman.py – and with the help of helper.py – we can show an animation of the
algorithm:

[38]: from barry_goldman import animation
from helper import show_animation

[39]: vertices = [
(1, 0),
(0.5, 1),
(6, 2),
(5, 0),

]

[40]: times = [
0,
1,
6,

(continues on next page)

97

barry_goldman.py
helper.py

(continued from previous page)

8,
]

[41]: show_animation(animation(vertices, times))

Animations can only be shown in HTML output, sorry!

If this doesn’t look very intuitive to you, you are not alone. For a different (and probably more straight-
forward) point of view, have a look at the notebook about non-uniform Catmull–Rom splines (page 88).
. doc/euclidean/catmull-rom-barry-goldman.ipynb ends here.

2.9 Kochanek–Bartels Splines

Kochanek–Bartels splines (a.k.a. TCB splines) are named after Kochanek and Bartels [KB84].

A Python implementation is available in the class splines.KochanekBartels (page 184).

The following section was generated from doc/euclidean/kochanek-bartels-properties.ipynb .

Properties of Kochanek–Bartels Splines

Kochanek–Bartels splines are interpolating cubic polynomial splines, with three user-defined param-
eters per vertex (of course they can also be chosen to be the same three values for the whole spline),
which can be used to change the shape and velocity of the spline.

These three parameters are called T for tension, C for continuity and B for bias. With the default values
of C = 0 and B = 0, a Kochanek–Bartels spline is identical to a cardinal spline. If the tension parameter
also has its default value T = 0, it is also identical to a Catmull–Rom spline (page 65).

[1]: import splines
from helper import plot_spline_2d

Let’s use a bespoke plotting function from kochanek_bartels.py to illustrate the TCB parameters:

[2]: from kochanek_bartels import plot_tcb

Tension

[3]: plot_tcb((0.5, 0, 0), (1, 0, 0), (-0.5, 0, 0), (-1, 0, 0))

98

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/euclidean/catmull-rom-barry-goldman.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/euclidean/kochanek-bartels-properties.ipynb
kochanek_bartels.py

3 2 1 0 1 2 3

1.5

1.0

0.5

0.0

0.5

1.0

1.5

T = 0.5
T = 1

T = -0.5
T = -1

Continuity

[4]: plot_tcb((0, -0.5, 0), (0, -1, 0), (0, 0.5, 0), (0, 1, 0))

3 2 1 0 1 2 3

1.5

1.0

0.5

0.0

0.5

1.0

1.5

C = -0.5
C = -1

C = 0.5
C = 1

Note that the cases T = 1 and C = −1 have a very similar shape (a.k.a. image38), but they have a
different timing (and therefore different velocities):

[5]: plot_tcb((1, 0, 0), (0, -1, 0), (0.5, 0, 0), (0, -0.5, 0))

38 https://en.wikipedia.org/wiki/Image_(mathematics)

99

https://en.wikipedia.org/wiki/Image_(mathematics)

3 2 1 0 1 2 3

1.5

1.0

0.5

0.0

0.5

1.0

1.5

T = 1
C = -1

T = 0.5
C = -0.5

A value of C = −1 on adjacent vertices leads to linear segments with piecewise constant speeds:

[6]: vertices1 = [(0, 0), (1, 1), (0, 2), (3, 2), (4, 1), (3, 0)]
s1a = splines.KochanekBartels(vertices1, tcb=(0, -1, 0), endconditions= closed)
plot_spline_2d(s1a, chords=False)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.5

1.0

1.5

2.0

A value of T = 1 will lead to linear segments as well, but the speed will fluctuate in each segment,
coming to a complete halt at each control point:

[7]: s1b = splines.KochanekBartels(vertices1, tcb=(1, 0, 0), endconditions= closed)
plot_spline_2d(s1b, chords=False)

100

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.5

1.0

1.5

2.0

Bias

This could also be called overshoot (if B > 0) and undershoot (if B < 0):

[8]: plot_tcb((0, 0, 0.5), (0, 0, 1), (0, 0, -0.5), (0, 0, -1))

3 2 1 0 1 2 3

1.5

1.0

0.5

0.0

0.5

1.0

1.5

B = 0.5
B = 1

B = -0.5
B = -1

Bias −1 followed by +1 can be used to achieve linear segments between two control points:

[9]: vertices2 = [(0, 0), (1.5, 0), (1, 1), (0, 0.5)]
tcb2 = [(0, 0, -1), (0, 0, 1), (0, 0, -1), (0, 0, 1)]
s2 = splines.KochanekBartels(vertices2, tcb=tcb2, endconditions= closed)
plot_spline_2d(s2, chords=False)

101

0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
0.0

0.2

0.4

0.6

0.8

1.0

A sequence of B = −1, C = −1 and B = +1 can be used to get two adjacent linear segments:

[10]: vertices3 = [(0, 0), (1, 0), (0, 0.5)]
tcb3 = [(0, 0, -1), (0, -1, 0), (0, 0, 1)]
s3 = splines.KochanekBartels(vertices3, tcb=tcb3, endconditions= closed)
plot_spline_2d(s3, chords=False)

0.2 0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Combinations

Of course, multiple parameters can be combined:

[11]: plot_tcb((1, -1, 0), (-1, 1, 0), (-1, -1, 0), (1, 1, 0))

102

3 2 1 0 1 2 3
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

T = 1, C = -1
T = -1, C = 1

T = -1, C = -1
T = 1, C = 1

[12]: plot_tcb((1, 0, 1), (-1, 0, 1), (0, -1, 1), (0, 1, -1))

3 2 1 0 1 2 3
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

T = 1, B = 1
T = -1, B = 1

C = -1, B = 1
C = 1, B = -1

. doc/euclidean/kochanek-bartels-properties.ipynb ends here.

The following section was generated from doc/euclidean/kochanek-bartels-uniform.ipynb .

Uniform Kochanek–Bartels Splines

As a starting point, remember the tangent vectors of uniform Catmull–Rom splines (page 67) – see also
equation 3 of the paper by Kochanek and Bartels [KB84]:

ẋi =
xi+1 − xi−1

2
,

which can be re-written as

ẋi =
(xi − xi−1) + (xi+1 − xi)

2
.

103

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/euclidean/kochanek-bartels-properties.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/euclidean/kochanek-bartels-uniform.ipynb

Parameters

Deriving TCB splines is all about inserting the parameters T, C and B into this equation.

Tension

Kochanek and Bartels [KB84] show the usage of T in equation 4:

ẋi = (1− Ti)
(xi − xi−1) + (xi+1 − xi)

2

Continuity

Up to now, the goal was to have a continuous first derivative at the control points, i.e. the incoming and
outgoing tangent vectors were identical:

ẋi = ẋ(−)i = ẋ(+)
i

This also happens to be the requirement for a spline to be C1 continuous.

The continuity parameter C allows us to break this continuity if we so desire, leading to different incom-
ing and outgoing tangent vectors – see equations 5 and 6 in the paper by Kochanek and Bartels [KB84]:

ẋ(−)i =
(1− Ci)(xi − xi−1) + (1 + Ci)(xi+1 − xi)

2

ẋ(+)
i =

(1 + Ci)(xi − xi−1) + (1− Ci)(xi+1 − xi)

2

Bias

Kochanek and Bartels [KB84] show the usage of B in equation 7:

ẋi =
(1 + Bi)(xi − xi−1) + (1− Bi)(xi+1 − xi)

2

All Three Combined

To get the tangent vectors of a TCB spline, the three equations can be combined – see equations 8 and 9
in the paper by [KB84]:

ẋ(+)
i =

(1− Ti)(1 + Ci)(1 + Bi)(xi − xi−1) + (1− Ti)(1− Ci)(1− Bi)(xi+1 − xi)

2

ẋ(−)i =
(1− Ti)(1− Ci)(1 + Bi)(xi − xi−1) + (1− Ti)(1 + Ci)(1− Bi)(xi+1 − xi)

2

Note

There is an error in equation (6.11) from Millington [Mil09]. All subscripts of x are wrong, most
likely copy-pasted from the preceding equation.

104

To simplify the results we will get later, we introduce the following shorthands [Mil09]:

ai = (1− Ti)(1 + Ci)(1 + Bi),

bi = (1− Ti)(1− Ci)(1− Bi),

ci = (1− Ti)(1− Ci)(1 + Bi),

di = (1− Ti)(1 + Ci)(1− Bi),

which lead to the simplified equations

ẋ(+)
i =

ai(xi − xi−1) + bi(xi+1 − xi)

2

ẋ(−)i =
ci(xi − xi−i) + di(xi+1 − xi)

2

Calculation

The above tangent vectors are sufficient to implement Kochanek–Bartels splines via Hermite splines
(page 18). In the rest of this notebook we are deriving the basis matrix and the basis polynomials for
comparison with other spline types.

[1]: import sympy as sp
sp.init_printing()

As in previous notebooks, we are using some SymPy helper classes from utility.py:

[2]: from utility import NamedExpression, NamedMatrix

And again, we are looking at the fifth spline segment from x4 to x5 (which can easily be generalized to
arbitrary segments).

[3]: x3, x4, x5, x6 = sp.symbols(xbm3:7)

[4]: control_values_KB = sp.Matrix([x3, x4, x5, x6])
control_values_KB

[4]:

x3
x4
x5
x6

We need three additional parameters per vertex: T, C and B. In our calculation, however, only the
parameters belonging to x4 and x5 are relevant:

[5]: T4, T5 = sp.symbols(T4 T5)
C4, C5 = sp.symbols(C4 C5)
B4, B5 = sp.symbols(B4 B5)

Using the shorthands mentioned above …

[6]: a4 = NamedExpression(a4 , (1 - T4) * (1 + C4) * (1 + B4))
b4 = NamedExpression(b4 , (1 - T4) * (1 - C4) * (1 - B4))
c5 = NamedExpression(c5 , (1 - T5) * (1 - C5) * (1 + B5))
d5 = NamedExpression(d5 , (1 - T5) * (1 + C5) * (1 - B5))
display(a4, b4, c5, d5)

105

utility.py

a4 = (1− T4) (B4 + 1) (C4 + 1)

b4 = (1− B4) (1− C4) (1− T4)

c5 = (1− C5) (1− T5) (B5 + 1)

d5 = (1− B5) (1− T5) (C5 + 1)

… we can define the tangent vectors:

[7]: xd4 = NamedExpression(
xdotbm4^(+) ,

sp.S.Half * (a4.name * (x4 - x3) + b4.name * (x5 - x4)))
xd5 = NamedExpression(

xdotbm5^(-) ,
sp.S.Half * (c5.name * (x5 - x4) + d5.name * (x6 - x5)))

display(xd4, xd5)

ẋ(+)
4 =

a4 (−x3 + x4)

2
+

b4 (−x4 + x5)

2

ẋ(−)5 =
c5 (−x4 + x5)

2
+

d5 (−x5 + x6)

2

[8]: display(xd4.subs_symbols(a4, b4))
display(xd5.subs_symbols(c5, d5))

ẋ(+)
4 =

(1− B4) (1− C4) (1− T4) (−x4 + x5)

2
+

(1− T4) (B4 + 1) (C4 + 1) (−x3 + x4)

2

ẋ(−)5 =
(1− B5) (1− T5) (C5 + 1) (−x5 + x6)

2
+

(1− C5) (1− T5) (B5 + 1) (−x4 + x5)

2

Basis Matrix

Let’s try to find a transformation from the control values defined above to Hermite control values:

[9]: control_values_H = sp.Matrix([x4, x5, xd4.name, xd5.name])
M_KBtoH = NamedMatrix(r {M_{\text{KB$,4\to$H}}} , 4, 4)
NamedMatrix(control_values_H, M_KBtoH.name * control_values_KB)

[9]:

x4
x5

ẋ(+)
4

ẋ(−)5

 = MKB, 4→H

x3
x4
x5
x6

If we substitute the above definitions of ẋ4 and ẋ5, we can obtain the matrix elements:

[10]: M_KBtoH.expr = sp.Matrix([
[expr.coeff(cv) for cv in control_values_KB]
for expr in control_values_H.subs([xd4.args, xd5.args]).expand()])

M_KBtoH.pull_out(sp.S.Half)

[10]:

MKB, 4→H =
1
2

0 2 0 0
0 0 2 0
−a4 a4 − b4 b4 0

0 −c5 c5 − d5 d5

Oncewe have away to get Hermite control values, we can use theHermite basis matrix from the notebook
about uniform cubic Hermite splines (page 23) …

106

[11]: M_H = NamedMatrix(
r {M_\text{H}} ,
sp.Matrix([[2, -2, 1, 1],

[-3, 3, -2, -1],
[0, 0, 1, 0],
[1, 0, 0, 0]]))

M_H

[11]:

MH =

2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0

… to calculate the basis matrix for Kochanek–Bartels splines:

[12]: M_KB = NamedMatrix(r {M_{\text{KB},4}} , M_H.name * M_KBtoH.name)
M_KB

[12]: MKB,4 = MHMKB, 4→H

[13]: M_KB = M_KB.subs_symbols(M_H, M_KBtoH).doit()
M_KB.pull_out(sp.S.Half)

[13]:

MKB,4 =
1
2

−a4 a4 − b4 − c5 + 4 b4 + c5 − d5 − 4 d5
2a4 −2a4 + 2b4 + c5 − 6 −2b4 − c5 + d5 + 6 −d5
−a4 a4 − b4 b4 0

0 2 0 0

And for completeness’ sake, its inverse looks like this:

[14]: M_KB.I

[14]:

MKB,4
−1 =

b4
a4

b4
a4

b4−2
a4

1
0 0 0 1
1 1 1 1

−c5+d5+6
d5

−c5+d5+4
d5

−c5+d5+2
d5

1

Basis Polynomials

[15]: t = sp.symbols(t)

Multiplication with the monomial basis (page 3) leads to the basis functions:

[16]: b_KB = NamedMatrix(
r {b_{\text{KB},4}} ,
sp.Matrix([t**3, t**2, t, 1]).T * M_KB.expr)

b_KB.T.pull_out(sp.S.Half)

[16]:

bKB,4
T =

1
2

a4t
(
−t2 + 2t− 1

)
t3 (a4 − b4 − c5 + 4) + t2 (−2a4 + 2b4 + c5 − 6) + t (a4 − b4) + 2

t
(
b4 + t2 (b4 + c5 − d5 − 4) + t (−2b4 − c5 + d5 + 6)

)
d5t2 (t− 1)

To be able to plot the basis functions, let’s substitute a4, b4, c5 and d5 back in:

[17]: b_KB = b_KB.subs_symbols(a4, b4, c5, d5).simplify()

Let’s use a helper function from helper.py:

107

helper.py

[18]: from helper import plot_basis

[19]: labels = sp.symbols(xbm_i-1 xbm_i xbm_i+1 xbm_i+2)

To be able to plot the basis functions, we have to choose some concrete TCB values.

[20]: plot_basis(
*b_KB.expr.subs({T4: 0, T5: 0, C4: 0, C5: 1, B4: 0, B5: 0}),
labels=labels)

0 1t

0

1

we
ig

ht

xi 1
xi

xi + 1
xi + 2

[21]: plot_basis(
*b_KB.expr.subs({T4: 0, T5: 0, C4: 0, C5: -0.5, B4: 0, B5: 0}),
labels=labels)

0 1t

0

1

we
ig

ht

xi 1
xi

xi + 1
xi + 2

Setting all TCB values to zero leads to the basis polynomials of uniform Catmull–Rom splines (page 80).
. doc/euclidean/kochanek-bartels-uniform.ipynb ends here.

108

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/euclidean/kochanek-bartels-uniform.ipynb

The following section was generated from doc/euclidean/kochanek-bartels-non-uniform.ipynb .

Non-Uniform Kochanek–Bartels Splines

Kochanek and Bartels [KB84] mainly talk about uniform splines. Only in section 4 – “Adjustments for
Parameter Step Size” – do they brieflymention the non-uniform case andprovide equations for “adjusted
tangent vectors”:

The formulas […] assume an equal time spacing of key frames, implying an equal number of
inbetweens within each key interval. A problem can exist if the animator requests a different
number of inbetweens for adjacent intervals. […] If the same parametric derivative is used
for both splines at Pi, these different step sizes will cause a discontinuity in the speed of
motion. What is required, if this discontinuity is not intentional, is a means of making a local
adjustment to the interval separating successive frames before and after the key frame so
that the speed of entry matches the speed of exit. This can be accomplished by adjusting the
specification of the tangent vector at the key frame based on the number of inbetweens in
the adjacent intervals. […] Once the tangent vectors have been found for an equal number
of inbetweens in the adjacent intervals, the adjustment required for different numbers of
inbetweens (Ni−1 frames between Pi−1 and Pi followed by Ni frames between Pi and Pi+1)
can be made by weighting the tangent vectors appropriately:

adjusted DDi = DDi
2Ni−1

Ni−1 + Ni

adjusted DSi = DSi
2Ni

Ni−1 + Ni

---Kochanek and Bartels [KB84], section 4

In their notation, DSi is the source derivative (i.e. the incoming tangent vector) at point Pi, and DDi is the
destination derivative (i.e. the outgoing tangent vector). The point Pi corresponds to xi in our notation.

To be able to play around with that, let’s implement it in a function. It turns out that for the way we will
be using this function, we have to use the reciprocal value of the adjustment mentioned in the paper:

[1]: def kochanek_bartels_tangents(xs, ns):
"""Adjusted tangent vectors according to Kochanek & Bartels."""
x_1, _, x1 = xs
N_1, N0 = ns
uniform = (x1 - x_1) / 2
NB: the K&B paper uses reciprocal weighting factors:
incoming = uniform * (N_1 + N0) / (2 * N0)
outgoing = uniform * (N_1 + N0) / (2 * N_1)
return incoming, outgoing

We can see that the uniform tangents are re-scaled but their direction is unchanged.

This is a hint that – although the paper claims to be using Catmull–Rom splines – we’ll get different
results than in the notebook about Catmull–Rom splines (page 67).

[2]: import numpy as np
import matplotlib.pyplot as plt

We’ll need theHermite basismatrix thatwederived in the notebook about uniformHermite splines (page 23)
and which is also shown by Kochanek and Bartels [KB84] in equation 2:

[3]: hermite_matrix = np.array([
[2, -2, 1, 1],
[-3, 3, -2, -1],
[0, 0, 1, 0],
[1, 0, 0, 0]])

109

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/euclidean/kochanek-bartels-non-uniform.ipynb

Since the paper uses a different (implicit) re-scaling of parameter values (based on the numbers of
inbetweens), we cannot use the classes from the splines (page 182) module and have to re-implement
everything from scratch:

[4]: def pseudo_catmull_rom(xs, ns):
"""Closed Catmull-Rom spline according to Kochanek & Bartels."""
xs = np.asarray(xs)
L = len(xs)
assert L >= 2
assert L == len(ns)
tangents = [

tangent
for i in range(L)
for tangent in kochanek_bartels_tangents(

[xs[i], xs[(i + 1) % L], xs[(i + 2) % L]],
[ns[i], ns[(i + 1) % L]])

]
Move last (outgoing) tangent to the beginning:
tangents = tangents[-1:] + tangents[:-1]
ts = [

np.linspace(0, 1, n + 1, endpoint=False).reshape(-1, 1)
for n in ns]

return np.concatenate([
t**[3, 2, 1, 0] @ hermite_matrix @ [xs[i], xs[(i + 1) % L], v0, v1]
for i, (t, v0, v1)
in enumerate(zip(ts, tangents[::2], tangents[1::2]))])

Note

The @ operator is used here to do NumPy’s matrix multiplication39.

Let’s plot an example:

[5]: vertices1 = [
(0, 0),
(1, 1),
(2, 0),

]
inbetweens1 = [

5,
20,
15,

]

[6]: plt.scatter(*pseudo_catmull_rom(vertices1, inbetweens1).T, marker= .)
plt.scatter(*np.array(vertices1).T, marker= x , color= k)
plt.axis(equal);

39 https://numpy.org/doc/stable/reference/generated/numpy.matmul.html

110

https://numpy.org/doc/stable/reference/generated/numpy.matmul.html

0.0 0.5 1.0 1.5 2.0
0.2

0.0

0.2

0.4

0.6

0.8

1.0

This doesn’t look too bad, let’s plot the same thing with splines.CatmullRom (page 184) for comparison.

[7]: from splines import CatmullRom

In oder to be able to compare the results, we have to convert the discrete numbers of inbetweens into
re-scaled parameter values:

[8]: def inbetweens2times(inbetweens):
return np.cumsum([0, *(n + 1 for n in inbetweens)])

[9]: times1 = inbetweens2times(inbetweens1)

Now we have everything to create a non-uniform Catmull–Rom spline …

[10]: cr_spline1 = CatmullRom(vertices1, times1, endconditions= closed)

… and with a helper function from helper.py …

[11]: from helper import plot_spline_2d

… we can plot it for direct comparison with the one suggested by Kochanek and Bartels:

[12]: plt.plot(
*pseudo_catmull_rom(vertices1, inbetweens1).T,
marker= . , linestyle= , label= K&B)

plot_spline_2d(cr_spline1, dots_per_second=1, label= ours)
plt.legend(numpoints=3);

111

helper.py

0.5 0.0 0.5 1.0 1.5 2.0 2.5

0.25

0.00

0.25

0.50

0.75

1.00

1.25 K&B
ours

Here we can clearly see that not only the lengths of the tangent vectors but also their directions have
been adjusted according to the neighboring parameter intervals.

Let’s look at a different example:

[13]: vertices2 = [
(0, 0),
(0, 0.5),
(4.5, 1.5),
(5, 1),
(2, -1),
(1.5, -1),

]
inbetweens2 = [

2,
15,
3,
12,
2,
10,

]

[14]: times2 = inbetweens2times(inbetweens2)

[15]: cr_spline2 = CatmullRom(vertices2, times2, endconditions= closed)

[16]: plt.plot(
*pseudo_catmull_rom(vertices2, inbetweens2).T,
marker= . , linestyle= , label= K&B)

plot_spline_2d(cr_spline2, dots_per_second=1, label= ours)
plt.legend(numpoints=3);

112

0 1 2 3 4 5

1.0

0.5

0.0

0.5

1.0

1.5 K&B
ours

This should illustrate the shortcomings of the tangent vectors suggested by Kochanek and Bartels.

Instead of sticking with their suggestion, we use the correct expression for tangent vectors of non-uniform
Catmull–Rom splines (page 85):

ẋi,Catmull–Rom =
(ti+1 − ti) vi−1 + (ti − ti−1) vi

ti+1 − ti−1
,

where vi =
xi+1−xi
ti+1−ti

.

To this equation, we can simply add the TCB parameters like we did in the notebook about uniform
Kochanek–Bartels splines (page 104), leading to the following equations for the incoming tangent ẋ(−)i

and the outgoing tangent ẋ(+)
i at vertex xi:

ai = (1− Ti)(1 + Ci)(1 + Bi)

bi = (1− Ti)(1− Ci)(1− Bi)

ci = (1− Ti)(1− Ci)(1 + Bi)

di = (1− Ti)(1 + Ci)(1− Bi)

ẋ(+)
i =

ai(ti+1 − ti) vi−1 + bi(ti − ti−1) vi
ti+1 − ti−1

ẋ(−)i =
ci(ti+1 − ti) vi−1 + di(ti − ti−1) vi

ti+1 − ti−1

These equations are used in the implementation of the class splines.KochanekBartels (page 184).
. doc/euclidean/kochanek-bartels-non-uniform.ipynb ends here.

113

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/euclidean/kochanek-bartels-non-uniform.ipynb

2.10 End Conditions

Most spline types that are defined by a sequence of control points to be interpolated need some addi-
tional information to be able to draw their segments at the beginning and at the end. For example, cubic
Catmull–Rom splines (page 65) need four consecutive control points to define the segment between the
middle two. For the very first and last segment, the fourth control point is missing. Another example are
natural splines (page 36), which would require to solve an underdetermined system of equations when
only the control points are given.

There are many ways to provide this missing information, here we will mention only a few of them.

clamped
This means providing a fixed tangent (i.e. first derivative) at the beginning and end of a cubic
spline. For higher degree splines, additional derivatives have to be be specified.

natural
For a cubic spline, thismeans setting the second derivative at the beginning and end of the spline to
zero and calculating the first derivative from that constraint, seeNatural End Conditions (page 114).

closed
This problem can also be solved by simply not having a begin and an end. When reaching the last
control point, the spline can just continue at the first control point. For non-uniform splines an
additional parameter interval has to be specified for the segment that’s inserted between the end
and the beginning.

For most splines in the splines module (page 182), clamped, natural and closed end conditions are available
via the endconditions argument. Except for closed, the end conditions can differ between the beginning
and end of the spline.

Additional information is available for end conditions of natural splines (page 41) and monotone end condi-
tions (page 130).

The following section was generated from doc/euclidean/end-conditions-natural.ipynb .

Natural End Conditions

For the first and last segment, we assume that the inner tangent is known. To find the outer tangent
according to natural end conditions, the second derivative is set to 0 at the beginning and end of the
curve.

We are looking only at the non-uniform case here, it’s easy to get to the uniform case by setting ∆i = 1.

Natural end conditions are naturally a good fit for natural splines (page 41). And in case you were won-
dering, natural end conditions are sometimes also called “relaxed” end conditions.

[1]: import sympy as sp
sp.init_printing(order= grevlex)

As usual, we are getting some help from utility.py:

[2]: from utility import NamedExpression

[3]: t = sp.symbols(t)

114

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/euclidean/end-conditions-natural.ipynb
utility.py

Begin

We are starting with the first polynomial segment p0(t), with t0 ≤ t ≤ t1.

[4]: t0, t1 = sp.symbols(t:2)

The coefficients …

[5]: a0, b0, c0, d0 = sp.symbols(a:dbm0)

… multiplied with the monomial basis (page 3) give us the uniform polynomial …

[6]: d0 * t**3 + c0 * t**2 + b0 * t + a0

[6]: d0t3 + c0t2 + b0t + a0

… which we re-scale to the desired parameter range:

[7]: p0 = NamedExpression(pbm0 , _.subs(t, (t - t0) / (t1 - t0)))
p0

[7]:
p0 =

d0 (t− t0)
3

(−t0 + t1)
3 +

c0 (t− t0)
2

(−t0 + t1)
2 +

b0 (t− t0)

−t0 + t1
+ a0

We need the first derivative (a.k.a. velocity, a.k.a. tangent vector):

[8]: pd0 = p0.diff(t)
pd0

[8]: d
dt

p0 =
3d0 (t− t0)

2

(−t0 + t1)
3 +

c0 · (2t− 2t0)

(−t0 + t1)
2 +

b0

−t0 + t1

Similar to the notebook about non-uniformHermite splines (page 30), we are interested in the function values
and first derivatives at the control points:

x0 = p0(t0)

x1 = p0(t1)

ẋ0 = p′0(t0)

ẋ1 = p′0(t1)

[9]: equations_begin = [
p0.evaluated_at(t, t0).with_name(xbm0),
p0.evaluated_at(t, t1).with_name(xbm1),
pd0.evaluated_at(t, t0).with_name(xdotbm0),
pd0.evaluated_at(t, t1).with_name(xdotbm1),

]

To get simpler equations, we are substituting ∆0 = t1 − t0. Note that this is only for display purposes,
the calculations are still done with ti.

[10]: delta_begin = [
(t0, 0),
(t1, sp.Symbol(Delta0)),

]

115

[11]: for e in equations_begin:
display(e.subs(delta_begin))

x0 = a0

x1 = a0 + b0 + c0 + d0

ẋ0 =
b0

∆0

ẋ1 =
b0

∆0
+

2c0

∆0
+

3d0

∆0

[12]: coefficients_begin = sp.solve(equations_begin, [a0, b0, c0, d0])

[13]: for c, e in coefficients_begin.items():
display(NamedExpression(c, e.subs(delta_begin)))

a0 = x0

b0 = ∆0 ẋ0

c0 = −2∆0 ẋ0 − ∆0 ẋ1 − 3x0 + 3x1

d0 = ∆0 ẋ0 + ∆0 ẋ1 + 2x0 − 2x1

The second derivative (a.k.a. acceleration) …

[14]: pdd0 = pd0.diff(t)
pdd0

[14]: d2

dt2 p0 =
3d0 · (2t− 2t0)

(−t0 + t1)
3 +

2c0

(−t0 + t1)
2

… at the beginning of the curve (t = t0) …

[15]: pdd0.evaluated_at(t, t0)

[15]: d2

dt2 p0

∣∣∣∣
t=t0

=
2c0

(−t0 + t1)
2

… is set to zero …

[16]: sp.Eq(_.expr, 0).subs(coefficients_begin)

[16]: 2 · (2t0 ẋ0 − 2t1 ẋ0 + t0 ẋ1 − t1 ẋ1 − 3x0 + 3x1)

(−t0 + t1)
2 = 0

… leading to an expression for the initial tangent vector:

[17]: xd0 = NamedExpression.solve(_, xdotbm0)
xd0.subs(delta_begin)

[17]: ẋ0 = −∆0 ẋ1 + 3x0 − 3x1

2∆0

This can also be written as

ẋ0 =
3 (x1 − x0)

2∆0
− ẋ1

2
.

116

End

If a spline has N vertices, it has N− 1 polynomial segments and the last polynomial segment is pN−2(t),
with tN−2 ≤ t ≤ tN−1. To simplify the notation a bit, let’s assumewe have N = 10 vertices, whichmakes
p8 the last polynomial segment. The following steps are very similar to the above derivation of the start
conditions.

[18]: a8, b8, c8, d8 = sp.symbols(a:dbm8)

[19]: t8, t9 = sp.symbols(t8:10)

[20]: d8 * t**3 + c8 * t**2 + b8 * t + a8

[20]: d8t3 + c8t2 + b8t + a8

[21]: p8 = NamedExpression(pbm8 , _.subs(t, (t - t8) / (t9 - t8)))
p8

[21]:
p8 =

d8 (t− t8)
3

(−t8 + t9)
3 +

c8 (t− t8)
2

(−t8 + t9)
2 +

b8 (t− t8)

−t8 + t9
+ a8

[22]: pd8 = p8.diff(t)
pd8

[22]: d
dt

p8 =
3d8 (t− t8)

2

(−t8 + t9)
3 +

c8 · (2t− 2t8)

(−t8 + t9)
2 +

b8

−t8 + t9

xN−2 = pN−2(tN−2)

xN−1 = pN−2(tN−1)

ẋN−2 = p′N−2(tN−2)

ẋN−1 = p′N−2(tN−1)

[23]: equations_end = [
p8.evaluated_at(t, t8).with_name(xbm8),
p8.evaluated_at(t, t9).with_name(xbm9),
pd8.evaluated_at(t, t8).with_name(xdotbm8),
pd8.evaluated_at(t, t9).with_name(xdotbm9),

]

We define ∆8 = t9 − t8:

[24]: delta_end = [
(t8, 0),
(t9, sp.Symbol(Delta8)),

]

[25]: for e in equations_end:
display(e.subs(delta_end))

x8 = a8

x9 = a8 + b8 + c8 + d8

ẋ8 =
b8

∆8

117

ẋ9 =
b8

∆8
+

2c8

∆8
+

3d8

∆8

[26]: coefficients_end = sp.solve(equations_end, [a8, b8, c8, d8])

[27]: for c, e in coefficients_end.items():
display(NamedExpression(c, e.subs(delta_end)))

a8 = x8

b8 = ∆8 ẋ8

c8 = −2∆8 ẋ8 − ∆8 ẋ9 − 3x8 + 3x9

d8 = ∆8 ẋ8 + ∆8 ẋ9 + 2x8 − 2x9

This time, the second derivative …

[28]: pdd8 = pd8.diff(t)
pdd8

[28]: d2

dt2 p8 =
3d8 · (2t− 2t8)

(−t8 + t9)
3 +

2c8

(−t8 + t9)
2

… at the end of the last segment (t = t9) …

[29]: pdd8.evaluated_at(t, t9)

[29]: d2

dt2 p8

∣∣∣∣
t=t9

=
3d8 (−2t8 + 2t9)

(−t8 + t9)
3 +

2c8

(−t8 + t9)
2

… is set to zero …

[30]: sp.Eq(_.expr, 0).subs(coefficients_end)

[30]: 3 (−2t8 + 2t9) (−t8 ẋ8 + t9 ẋ8 − t8 ẋ9 + t9 ẋ9 + 2x8 − 2x9)

(−t8 + t9)
3 +

2 · (2t8 ẋ8 − 2t9 ẋ8 + t8 ẋ9 − t9 ẋ9 − 3x8 + 3x9)

(−t8 + t9)
2 = 0

… leading to an expression for the final tangent vector:

[31]: xd9 = NamedExpression.solve(_, xdotbm9)
xd9.subs(delta_end)

[31]: ẋ9 = −∆8 ẋ8 + 3x8 − 3x9

2∆8

Luckily, that’s symmetric to the result we got above.

The equation can be generalized to

ẋN−1 =
3 (xN−1 − xN−2)

2∆N−2
− ẋN−2

2
.

118

Example

Weare showing a one-dimensional examplewhere 3 time/value pairs are given. The slope for themiddle
value is given, the begin and end slopes are calculated using the “natural” end conditions as calculated
above.

[32]: values = 2, 2, 1
times = 0, 4, 5
slope = 2

We are using a few helper functions from helper.py for plotting:

[33]: from helper import plot_sympy, grid_lines

[34]: x0, x1 = sp.symbols(xbm0:2)
x8, x9 = sp.symbols(xbm8:10)
xd1 = sp.symbols(xdotbm1)
xd8 = sp.symbols(xdotbm8)

[35]: begin = p0.subs(coefficients_begin).subs_symbols(xd0).subs({
t0: times[0],
t1: times[1],
x0: values[0],
x1: values[1],
xd1: slope,

}).with_name(r p_\text{begin})
end = p8.subs(coefficients_end).subs_symbols(xd9).subs({

t8: times[1],
t9: times[2],
x8: values[1],
x9: values[2],
xd8: slope,

}).with_name(r p_\text{end})

[36]: plot_sympy(
(begin.expr, (t, times[0], times[1])),
(end.expr, (t, times[1], times[2])))

grid_lines(times, [1, 2])

0 4 5

1

2

119

helper.py

[37]: begin.diff(t).evaluated_at(t, times[0])

[37]: d
dt

pbegin

∣∣∣∣
t=0

= −1

[38]: end.diff(t).evaluated_at(t, times[-1])

[38]: d
dt

pend

∣∣∣∣
t=5

= −5
2

Bézier Control Points

Up to nowwe have assumed that we know one of the tangent vectors and want to find the other tangent
vector in order to construct a Hermite spline (page 18). What if we want to construct a Bézier spline
(page 45) instead?

If the inner Bézier control points x̃(−)1 and x̃(+)
N−2 are given, we can insert the equations for the tangent

vectors from the notebook about non-uniform Bézier splines (page 60) into our tangent vector equations
from above and solve them for the outer control points x̃(+)

0 and x̃(−)N−1, respectively.

[39]: xtilde0, xtilde1 = sp.symbols(xtildebm0^(+) xtildebm1^(-))

[40]: NamedExpression.solve(xd0.subs({
xd0.name: 3 * (xtilde0 - x0) / (t1 - t0),
xd1: 3 * (x1 - xtilde1) / (t1 - t0),

}), xtilde0)

[40]:
x̃(+)

0 =
x0

2
+

x̃(−)1
2

[41]: xtilde8, xtilde9 = sp.symbols(xtildebm8^(+) xtildebm9^(-))

[42]: NamedExpression.solve(xd9.subs({
xd8: 3 * (xtilde8 - x8) / (t9 - t8),
xd9.name: 3 * (x9 - xtilde9) / (t9 - t8),

}), xtilde9)

[42]:
x̃(−)9 =

x9

2
+

x̃(+)
8
2

Note that all ∆i cancel each other out (as well as the inner vertices x1 and xN−2) and we get very simple
equations for the “natural” end conditions:

x̃(+)
0 =

x0 + x̃(−)1
2

x̃(−)N−1 =
xN−1 + x̃(+)

N−2
2

. doc/euclidean/end-conditions-natural.ipynb ends here.

The following section was generated from doc/euclidean/piecewise-monotone.ipynb .

2.11 Piecewise Monotone Interpolation

When interpolating a sequence of one-dimensional data points, it is sometimes desirable to limit the
interpolant between any two adjacent data points to a monotone function. This makes sure that there

120

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/euclidean/end-conditions-natural.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/euclidean/piecewise-monotone.ipynb

are no overshoots beyond the given data points. In other words, if the data points are within certain
bounds, all interpolated data will also be within those same bounds. It follows that if all data points
are non-negative, interpolated data will be non-negative as well. Furthermore, this makes sure that
monotone data leads to a monotone interpolant – see also Monotone Interpolation (page 128) below.

A Python implementation of one-dimensional piecewise monotone cubic splines is available in the class
splines.PiecewiseMonotoneCubic (page 185).

The SciPy package provides a similar tool with the pchip_interpolate()40 function and the PchipInter-
polator41 class (see below for more details).

The 3D animation software Blender42 provides an Auto Clamped43 property for creating piecewise
monotone animation cuves.

Examples

[1]: import matplotlib.pyplot as plt
import numpy as np

[2]: import splines

We use a few helper functions from helper.py for plotting:

[3]: from helper import plot_spline_1d, grid_lines

[4]: values = 0, 3, 3, 7
times = 0, 3, 8, 10, 11

Let’s compare a piecewise monotone spline with a Catmull–Rom spline (page 65) and a natural spline
(page 36):

[5]: plot_spline_1d(
splines.PiecewiseMonotoneCubic(values, times, closed=True),
label= piecewise monotone)

plot_spline_1d(
splines.CatmullRom(values, times, endconditions= closed),
label= Catmull–Rom , linestyle= --)

plot_spline_1d(
splines.Natural(values, times, endconditions= closed),
label= natural spline , linestyle= -.)

plt.legend()
grid_lines(times)

40 https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.pchip_interpolate.html
41 https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PchipInterpolator.html
42 https://www.blender.org
43 https://docs.blender.org/manual/en/dev/editors/graph_editor/fcurves/properties.html

editors-graph-fcurves-settings-handles

121

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.pchip_interpolate.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PchipInterpolator.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PchipInterpolator.html
https://www.blender.org
https://docs.blender.org/manual/en/dev/editors/graph_editor/fcurves/properties.html#editors-graph-fcurves-settings-handles
helper.py

0 3 8 10 11

2

0

2

4

6

8 piecewise monotone
Catmull Rom
natural spline

[6]: def plot_piecewise_monotone(*args, **kwargs):
s = splines.PiecewiseMonotoneCubic(*args, **kwargs)
plot_spline_1d(s)
grid_lines(s.grid)

[7]: plot_piecewise_monotone([0, 1, 3, 2, 1])

0 1 2 3 4
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Providing Slopes

By default, appropriate slopes are calculated automatically. However, those slopes can be overridden if
desired. Specifying None falls back to the auto-generated default.

[8]: plot_piecewise_monotone([0, 1, 3, 2, 1], slopes=[None, 0, None, -3, -1.5])

122

0 1 2 3 4
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Slopes that would lead to non-monotone segments are prohibited:

[9]: try:
plot_piecewise_monotone([0, 1, 3, 2, 1], slopes=[None, 4, None, None, None])

except Exception as e:
print(e)
assert too steep in str(e)

else:
assert False

Slope too steep: 4

Generating and Modifying the Slopes at Segment Boundaries

In this paper we derive necessary and sufficient conditions for a cubic to be monotone in
an interval. These conditions are then used to develop an algorithm which constructs a C 1

monotone piecewise cubic interpolant to monotone data. The curve produced contains no
extraneous “bumps” or “wiggles”, which makes it more readily acceptable to scientists and
engineers.

---Fritsch and Carlson [FC80], section 1

Fritsch and Carlson [FC80] derive necessary and sufficient conditions for a cubic curve segment to be
monotone, based on the slopes of the secant lines (i.e. the piecewise linear interpolant) and their end-
point derivatives. Furthermore, they provide a two-step algorithm to generate piecewise monotone
cubics:

1. calculate initial tangents (with whatever method)

2. tweak the ones that don’t fulfill the monotonicity conditions

For the first step, they suggest using the standard three-point difference, which we have already seen in
the tangent vectors of non-uniform Catmull–Rom splines (page 85) and which is implemented in the class
splines.CatmullRom (page 184).

To implement Step 1 we have found the standard three-point difference formula to be satis-
factory for d2, d3, · · ·, dn−1.

---Fritsch and Carlson [FC80], section 4

This is what de Boor [[dB78], p. 53] calls cubic Bessel interpolation, in which the interior
derivatives are set using the standard three point difference formula.

123

---Fritsch and Carlson [FC80], section 5

In the 2001 edition of the book by de Boor [dB78], piecewise cubic Bessel interpolation is defined on
page 42.

For the following equations, we define the slope of the secant lines as

Si =
xi+1 − xi
ti+1 − ti

.

We use xi to represent the given data points and and ti to represent the corresponding parameter values.
The slope at those values is represented by ẋi.

Note

In the literature, the parameter values are often represented by xi, so try not to be confused!

Based on Fritsch and Carlson [FC80], Dougherty et al. [DEH89] provide (in equation 4.2) an algorithm
for modifying the initial slopes to ensure monotonicity. Adapted to our notation, it looks like this:

ẋi ←

min(max(0, ẋi), 3 min(|Si−1|, |Si|)), σi > 0,
max(min(0, ẋi),−3 min(|Si−1|, |Si|)), σi < 0,
0, σi = 0,

where σi = sgn(Si) if SiSi−1 > 0 and σi = 0 otherwise.

This algorithm is implemented in the class splines.PiecewiseMonotoneCubic (page 185).

PCHIP/PCHIM

A different approach for obtaining slopes that ensure monotonicity is described by Fritsch and Butland
[FB84], equation (5):

G(S1, S2, h1, h2) =

{ S1S2
αS2+(1−α)S1

if S1S2 > 0,

0 otherwise,

where

α =
1
3

(
1 +

h2

h1 + h2

)
=

h1 + 2h2

3(h1 + h2)
.

The function G can be used to calculate the slopes at segment boundaries, given the slopes Si of the
neighboring secant lines and the neighboring parameter intervals hi = ti+1 − ti.

Let’s define this using SymPy44 for later reference:

[10]: import sympy as sp

[11]: h1, h2 = sp.symbols(h1:3)
S1, S2 = sp.symbols(S1:3)

44 https://www.sympy.org/

124

https://www.sympy.org/

[12]: alpha = (h1 + 2 * h2) / (3 * (h1 + h2))
G1 = (S1 * S2) / (alpha * S2 + (1 - alpha) * S1)

This has been implemented in a Fortran45 package described by Fritsch [Fri82], who has coined the
acronym PCHIP, originally meaning Piecewise Cubic Hermite Interpolation Package.

It features software to produce a monotone and “visually pleasing” interpolant to monotone
data.

---Fritsch [Fri82]

The package contains many Fortran subroutines, but the one that’s relevant here is PCHIM, which is short
for Piecewise Cubic Hermite Interpolation to Monotone data.

The source code (including some later modifications) is available online46. This is the code snippet
responsible for calculating the slopes:

C
C USE BRODLIE MODIFICATION OF BUTLAND FORMULA.
C

45 CONTINUE
HSUMT3 = HSUM+HSUM+HSUM
W1 = (HSUM + H1)/HSUMT3
W2 = (HSUM + H2)/HSUMT3
DMAX = MAX(ABS(DEL1), ABS(DEL2))
DMIN = MIN(ABS(DEL1), ABS(DEL2))
DRAT1 = DEL1/DMAX
DRAT2 = DEL2/DMAX
D(1,I) = DMIN/(W1*DRAT1 + W2*DRAT2)

This looks different from the function G defined above, but if we transform the Fortran code into math
…

[13]: HSUM = h1 + h2

[14]: W1 = (HSUM + h1) / (3 * HSUM)
W2 = (HSUM + h2) / (3 * HSUM)

… and use separate expressions depending on which of the neighboring secant slopes is larger …

[15]: G2 = S1 / (W1 * S1 / S2 + W2 * S2 / S2)
G3 = S2 / (W1 * S1 / S1 + W2 * S2 / S1)

… we see that the two cases are mathematically equivalent …

[16]: assert sp.simplify(G2 - G3) == 0

… and that they are in fact also equivalent to the aforementioned equation from Fritsch and Butland
[FB84]:

[17]: assert sp.simplify(G1 - G2) == 0

Presumably, the Fortran code uses the larger one of the pair of secant slopes in the denominator in order
to reduce numerical errors if one of the slopes is very close to zero.

Yet another variation of this theme is shown by Moler [Mol04], section 3.4, which defines the slope dk
as a weighted harmonic mean of the two neighboring secant slopes:

45 https://en.wikipedia.org/wiki/Fortran
46 https://netlib.org/slatec/pchip/dpchim.f

125

https://en.wikipedia.org/wiki/Fortran
https://netlib.org/slatec/pchip/dpchim.f

w1 + w2

dk
=

w1

δk−1
+

w2

δk
,

with w1 = 2hk + hk−1 and w2 = hk + 2hk−1. Using the notation from above, dk = ẋk and δk = Sk.

Again, when defining this using SymPy …

[18]: w1 = 2 * h2 + h1
w2 = h2 + 2 * h1

[19]: G4 = (w1 + w2) / (w1 / S1 + w2 / S2)

… we can see that it is actually equivalent to the previous equations:

[20]: assert sp.simplify(G4 - G1) == 0

The PCHIM algorithm, which is nowadays known by the less self-explanatory name PCHIP, is available
in the SciPy package in form of the pchip_interpolate()47 function and the PchipInterpolator48 class.

[21]: from scipy.interpolate import PchipInterpolator

More Examples

To illustrate the differences between the two approaches mentioned above, let’s plot a few examples.
Both methods are piecewise monotone, but their exact shape is slightly different. Decide for yourself
which one is more “visually pleasing”!

[22]: def compare_pchip(values, times):
plot_times = np.linspace(times[0], times[-1], 100)
plt.plot(

plot_times,
PchipInterpolator(times, values)(plot_times),
label= PCHIP , linestyle= --)

plt.plot(
plot_times,
splines.PiecewiseMonotoneCubic(values, times).evaluate(plot_times),
label= PiecewiseMonotoneCubic , linestyle= -.)

plt.legend()
grid_lines(times)

[23]: compare_pchip([0, 0, 1.5, 4, 4], [-1, 0, 1, 8, 9])

47 https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.pchip_interpolate.html
48 https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PchipInterpolator.html

126

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.pchip_interpolate.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PchipInterpolator.html

1 0 1 8 9
0

1

2

3

4

PCHIP
PiecewiseMonotoneCubic

[24]: compare_pchip([0, 0, 1.5, 4, 4], [-1, 0, 6, 8, 9])

1 0 6 8 9
0

1

2

3

4 PCHIP
PiecewiseMonotoneCubic

There is even a slight difference in the uniform case:

[25]: compare_pchip([0, 0, 3.3, 4, 4], [-1, 0, 1, 2, 3])

1 0 1 2 3
0

1

2

3

4

PCHIP
PiecewiseMonotoneCubic

127

[26]: compare_pchip([0, 0, 0.7, 4, 4], [-1, 0, 1, 2, 3])

1 0 1 2 3
0

1

2

3

4 PCHIP
PiecewiseMonotoneCubic

For differences at the beginning and the end of the curve, see the section about end conditions (page 130).

Monotone Interpolation

When using the aforementioned piecewise monotone algorithms with monotone data, the entire inter-
polant will be monotone.

The class splines.MonotoneCubic (page 185) works very much the same as splines.PiecewiseMonotoneCubic
(page 185), except that it only allows monotone data values.

Since the resulting interpolation function is monotone, it can be inverted. Given a function value, the
method .get_time() (page 185) can be used to find the associated parameter value.

[27]: s = splines.MonotoneCubic([0, 2, 2, 6, 6], grid=[0, 2, 3, 6, 8])

[28]: probes = 1, 3, 5

[29]: fig, ax = plt.subplots()
plot_spline_1d(s)
ax.scatter(s.get_time(probes), probes)
grid_lines(s.grid)

128

0 2 3 6 8
0

1

2

3

4

5

6

If the solution is not unique (i.e. on plateaus), the return value is None:

[30]: assert s.get_time(2) is None

Closed curves are obviously not possible:

[31]: try:
splines.MonotoneCubic([0, 2, 2, 6, 6], closed=True)

except Exception as e:
print(e)
assert closed in str(e)

else:
assert False

The "closed" argument is not allowed

However, in some situations it might be useful to automatically infer the same slope at the beginning
and end of the spline. This can be achieved with the cyclic flag.

[32]: s = splines.MonotoneCubic([0, 1, 5])

[33]: s_cyclic = splines.MonotoneCubic([0, 1, 5], cyclic=True)

[34]: plot_spline_1d(s, label= not cyclic)
plot_spline_1d(s_cyclic, label= cyclic)
grid_lines(s.grid)
plt.legend();

129

0 1 2
0

1

2

3

4

5 not cyclic
cyclic

The cyclic flag is only allowed if the first and last slope is None:

[35]: try:
splines.MonotoneCubic([0, 1, 5], slopes=[1, None, None], cyclic=True)

except Exception as e:
print(e)
assert cyclic in str(e)

else:
assert False

If "cyclic", the first and last slope must be None

End Conditions

The usual end conditions (page 114) don’t necessarily lead to a monotone interpolant, therefore we need
to come up with custom end conditions that preserve monotonicity.

For the end derivatives, the noncentered three point difference formula may be used, al-
though it is sometimes necessary to modify d1 and/or dn if the signs are not appropriate. In
these cases we have obtained better results setting d1 or dn equal to zero, rather than equal
to the slope of the secant line.

---Fritsch and Carlson [FC80], section 4

Fritsch and Carlson [FC80] recommend using the noncentered three point difference formula, however, they
fail to mention what that actually is. Luckily, we can have a look at the code49:

C
C SET D(1) VIA NON-CENTERED THREE-POINT FORMULA, ADJUSTED TO BE
C SHAPE-PRESERVING.
C

HSUM = H1 + H2
W1 = (H1 + HSUM)/HSUM
W2 = -H1/HSUM
D(1,1) = W1*DEL1 + W2*DEL2
IF (PCHST(D(1,1),DEL1) .LE. ZERO) THEN

D(1,1) = ZERO
ELSE IF (PCHST(DEL1,DEL2) .LT. ZERO) THEN

C NEED DO THIS CHECK ONLY IF MONOTONICITY SWITCHES.
(continues on next page)

49 https://netlib.org/slatec/pchip/dpchim.f

130

https://netlib.org/slatec/pchip/dpchim.f

(continued from previous page)

DMAX = THREE*DEL1
IF (ABS(D(1,1)) .GT. ABS(DMAX)) D(1,1) = DMAX

ENDIF

The function PCHST is a simple sign test:

PCHST = SIGN(ONE,ARG1) * SIGN(ONE,ARG2)
IF ((ARG1.EQ.ZERO) .OR. (ARG2.EQ.ZERO)) PCHST = ZERO

This implementation seems to be used by “modern” PCHIP/PCHIM implementations as well.

This defines the pchip slopes at interior breakpoints, but the slopes d1 and dn at either end
of the data interval are determined by a slightly different, one-sided analysis. The details are
in pchiptx.m.

---Moler [Mol04], section 3.4

In section 3.6, Moler [Mol04] shows the implementation of pchiptx.m:

function d = pchipend(h1,h2,del1,del2)
% Noncentered, shape-preserving, three-point formula.

d = ((2*h1+h2)*del1 - h1*del2)/(h1+h2);
if sign(d) ~= sign(del1)

d = 0;
elseif (sign(del1)~=sign(del2))&(abs(d)>abs(3*del1))

d = 3*del1;
end

Apparently, this is the same as the above Fortran implementation.

The class scipy.interpolate.PchipInterpolator50 uses the same implementation (ported to Python)51.

This implementation ensures monotonicity, but it might seem a bit strange that for calculating the first
slope, the second slope is not directly taken into account.

Another awkward property is that for calculating the inner slopes, only the immediately neighboring
secant slopes and time intervals are considered, while for calculating the initial and final slopes, both the
neighboring segment and the one next to it are considered. This makes the curve less locally controlled
at the ends compared to the middle.

[36]: def plot_pchip(values, grid, **kwargs):
pchip = PchipInterpolator(grid, values)
times = np.linspace(grid[0], grid[-1], 100)
plt.plot(times, pchip(times), **kwargs)
plt.scatter(grid, pchip(grid))
grid_lines(grid)

[37]: plot_pchip([0, 1, 0], [0, 1, 2])
plot_pchip([0, 1, 1], [0, 1, 2], linestyle= --)
grid_lines([0, 1, 2])

50 https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PchipInterpolator.html
51 https://github.com/scipy/scipy/blob/v1.6.1/scipy/interpolate/_cubic.py L237-L250

131

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PchipInterpolator.html
https://github.com/scipy/scipy/blob/v1.6.1/scipy/interpolate/_cubic.py#L237-L250

0 1 2
0.0

0.2

0.4

0.6

0.8

1.0

[38]: plot_pchip([0, 1, 0], [0, 1, 4])
plot_pchip([0, 1, 0], [0, 1, 1.5], linestyle= --)
grid_lines([0, 1, 1.5, 4])

0.0 1.0 1.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0

In both of the above examples, the very left slope depends on properties of the very right segment.

The slope at t = 1 is clearly zero in both cases and apart from that fact, the shape of the curve at t > 1
should, arguably, not have any influence on the slope at t = 0.

To provide an alternative to this behavior, the class splines.PiecewiseMonotoneCubic (page 185) uses end
conditions that depend on the slope at t = 1, but not explicitly on the shape of the curve at t > 1:

[39]: plot_piecewise_monotone([0, 1, 0], grid=[0, 1, 1.5])
plot_piecewise_monotone([0, 1, 0], grid=[0, 1, 4])
grid_lines([0, 1, 1.5, 4])

132

0.0 1.0 1.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0

The initial and final slopes of splines.PiecewiseMonotoneCubic (page 185) are implemented like this:

[40]: def monotone_end_condition(inner_slope, secant_slope):
if secant_slope < 0:

return -monotone_end_condition(-inner_slope, -secant_slope)
assert 0 <= inner_slope <= 3 * secant_slope
if inner_slope <= secant_slope:

return 3 * secant_slope - 2 * inner_slope
else:

return (3 * secant_slope - inner_slope) / 2

Even More Examples

The following example plots show different slopes at the beginning and end due to different end condi-
tions.

[41]: compare_pchip([1, 2, 1], [1, 3.5, 5])

1.0 3.5 5.0
1.0

1.2

1.4

1.6

1.8

2.0

PCHIP
PiecewiseMonotoneCubic

[42]: compare_pchip([1, 2, 3.5, 4, 3], [1, 1.5, 4, 5, 6])

133

1.0 1.5 4.0 5.0 6.0
1.0

1.5

2.0

2.5

3.0

3.5

4.0 PCHIP
PiecewiseMonotoneCubic

[43]: compare_pchip([1, 2, 1.9, 1], [1, 3, 4, 6])

1 3 4 6
1.0

1.2

1.4

1.6

1.8

2.0

PCHIP
PiecewiseMonotoneCubic

. doc/euclidean/piecewise-monotone.ipynb ends here.

The following section was generated from doc/euclidean/re-parameterization.ipynb .

2.12 Re-Parameterization

As we have seen previously – for example with Hermite splines (page 33) and Catmull–Rom splines
(page 73) – changing the relative amount of time (or more generally, the relative size of the parameter
interval) per spline segment leads to different curve shapes. Given the same underlying polynomials,
we cannot simply re-scale the parameter values without affecting the shape of the curve.

However, sometimes we want to keep the shape (or more accurately, the image52) of a curve intact and
only change its timing.

This can be done by introducing a function that maps from a new set of parameter values to the param-
eter values of the original spline.

52 https://en.wikipedia.org/wiki/Image_(mathematics)

134

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/euclidean/piecewise-monotone.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/euclidean/re-parameterization.ipynb
https://en.wikipedia.org/wiki/Image_(mathematics)

Arc-Length Parameterization

Instead of using a curve x(t) with a free parameter t (which we often interpret as time), it is sometimes
useful to have a curve xarc(s) with the same image but where the parameter s represents the distance
travelled since the beginning of the curve. The length of a piece of curve is called arc length53 and there-
fore xarc(s) is called arc-length parameterized. Sometimes, this is also called “natural” parameterization –
not to be confused with natural splines (page 36) and natural end conditions (page 114).

An interesting (and slightly confusing) thing to do now, is to use xarc(s) with time as a parameter. Note
that the speed along a curve is calculated as distance per time interval (v = ds

dt), but if time and distance
are the same (s ≡ t), we get a constant speed v = ds

ds = 1. In other words, the tangent vector of an
arc-length parameterized curve always has unit length.

To turn an existing curve x(t) into its arc-length parameterized counterpart xarc(s), we need the param-
eter t as function of travelled distance s, i.e. t(s):

xarc(s) = x(t(s))

Sadly, we don’t know t(s), but we can find s(t) and then try to find the inverse function.

Let’s look at the tangent vector d
dτ x(τ) (i.e. the velocity) at every infinitesimally small time interval dτ.

The length travelled along the curve in that time interval is the length of the tangent vector
∣∣∣ d

dτ x(τ)
∣∣∣ (i.e.

the speed) multiplied by the time interval dτ. Adding all these small pieces from t0 to t results in the
arc length

s(t) =
t∫

t0

∣∣∣∣ d
dτ

x(τ)
∣∣∣∣ dτ.

This looks straightforward enough, but it turns out that this integral cannot be solved analytically if x(t)
is cubic (or of higher degree). The reason for that is the Abel–Ruffini theorem54.

We’ll have to use numerical integration55 instead.

Finally, we need to invert this function. In other words, given an arc length s, we have to provide a way
to obtain the corresponding t. This can be reduced to a root finding problem, which can be solved with
different numerical methods, for example with the bisection method56.

Arc-length re-parameterization is implemented in the Python class splines.UnitSpeedAdapter (page 185).
This is using scipy.integrate.quad()57 for numerical integration and scipy.optimize.bisect()58 for root
finding.

Let’s show an example spline using the vertices from the section about centripetal parameterization
(page 73):

[1]: points4 = [
(0, 0),
(0, 0.5),
(1.5, 1.5),
(1.6, 1.5),
(3, 0.2),
(3, 0),

]

53 https://en.wikipedia.org/wiki/Arc_length
54 https://en.wikipedia.org/wiki/Abel–Ruffini_theorem
55 https://en.wikipedia.org/wiki/Numerical_integration
56 https://en.wikipedia.org/wiki/Bisection_method
57 https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.quad.html
58 https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.bisect.html

135

https://en.wikipedia.org/wiki/Arc_length
https://en.wikipedia.org/wiki/Abel–Ruffini_theorem
https://en.wikipedia.org/wiki/Numerical_integration
https://en.wikipedia.org/wiki/Bisection_method
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.quad.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.bisect.html

[2]: import splines
from helper import plot_spline_2d

First we create a centripetal Catmull–Rom spline …

[3]: s1 = splines.CatmullRom(points4, alpha=0.5, endconditions= closed)

… which we then convert to an arc-length parameterized spline:

[4]: s2 = splines.UnitSpeedAdapter(s1)

[5]: %%time
plot_spline_2d(s1, dots_per_second=10)

CPU times: user 34 ms, sys: 338 µs, total: 34.4 ms
Wall time: 34.7 ms

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Evaluating the arc-length parameterized spline takes quite a bit longer:

[6]: %%time
plot_spline_2d(s2, dots_per_second=10)

CPU times: user 2.44 s, sys: 20.6 ms, total: 2.46 s
Wall time: 2.42 s

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

136

We are plotting 10 dots per second, and we can count about 10 dots per unit of distance, which confirms
that the spline has a speed of 1.

Spline-Based Re-Parameterization

We can choose any function to map a new parameter to old parameter values. Since we are already
talking about splines, we might as well use a one-dimensional spline. To rule out backwards movement
along the original spline, we should use use a monotone spline (page 128) as implemented, for example,
in the class splines.MonotoneCubic (page 185).

A tool for re-parameterizing an existing spline is available in the class splines.NewGridAdapter (page 186).

This is especially useful when applied to an already arc-length parameterized spline, because then the
slope of the parameter re-mapping function directly corresponds to the speed along the spline.

Not all new parameter values have to be explicitly given. If unspecified, they are interpolated from the
surrounding values.

For closed curves it might be useful to have the same slope at the beginning and the end of the spline.
This can be achieved by using cyclic=True.

[7]: new_grid = [-1, -0.5, None, None, 2, None, 3]
s3 = splines.NewGridAdapter(s2, new_grid, cyclic=True)
s3.grid

[7]: [-1, -0.5, 1.0334250405837566, 1.0992464899992567, 2, 2.0730953134961054, 3]

[8]: %%time
plot_spline_2d(s3, dots_per_second=10)

CPU times: user 1.4 s, sys: 32 ms, total: 1.43 s
Wall time: 1.35 s

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

. doc/euclidean/re-parameterization.ipynb ends here.

137

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/euclidean/re-parameterization.ipynb

3 Rotation Splines

There are many ways to implement rotation splines. Here we use unit quaternions to represent rotations.
First, we’ll show what quaternions are, and how their subset of unit quaternions can be used to handle
rotations. Based on a special form of linear interpolation called Slerp (page 144), we then use several
algorithms that we have seen in the section about Euclidean splines (page 3) – which all utilize linear inter-
polations (and extrapolations) – to implement rotation splines. In the end of this section, we present a
few methods which are not based on Slerp, but it will turn out that they all have severe limitations.

The following section was generated from doc/rotation/quaternions.ipynb .

3.1 Quaternions

We are interested in unit quaternions (see below), because they are a very useful representation of rota-
tions. But before we go into that, we should probably mention what a quaternion59 is. We don’t need all
the details, we just need to know a few facts (without burdening ourselves too much with mathematical
rigor):

• Quaternions live in the four-dimensional Euclidean space R4. Each quaternion has exactly one
corresponding element of R4 and vice versa.

• Unlike elements of R4, quaternions support a special kind of quaternion multiplication.

• Quaternion multiplication is weird. The order of operands matters (i.e. multiplication is noncom-
mutative60).

A Python implementation is available in the class splines.quaternion.Quaternion (page 186).

Quaternion Representations

There are multiple equivalent ways to represent quaternions. Their original algebraic representation is

q = w + xi + yj + zk,

where i2 = j2 = k2 = ijk = −1. It is important to note that the order in which the basic quaternions i,
j and k are multiplied matters: ij = k, ji = −k (i.e. their multiplication is anticommutative61). The
information given so far should be sufficient to derive quaternion multiplication, but let’s not do that
right now. Quaternions can also be represented as pairs containing a scalar and a 3D vector:

q = (w,~v) = (w, (x, y, z))

Sometimes, the scalar and vector parts are also called “real” and “imaginary” parts, respectively. The
four components can also be displayed as simple 4-tuples, which can be interpreted as coordinates of
the four-dimensional Euclidean space R4:

q = (w, x, y, z) or q = (x, y, z, w)

The order of components can be chosen arbitrarily. In mathematical textbooks, the order (w, x, y, z) is
often preferred (and sometimes written as (a, b, c, d)). In numerical software implementations, how-
ever, the order (x, y, z, w) is more common (probably because it is memory-compatible with 3D vectors
(x, y, z)). In the Python class splines.quaternion.Quaternion (page 186), these representations are available
via the attributes scalar (page 187), vector (page 187), wxyz (page 187) and xyzw (page 187).

59 https://en.wikipedia.org/wiki/Quaternion
60 https://en.wikipedia.org/wiki/Noncommutative
61 https://en.wikipedia.org/wiki/Anticommutative_property

138

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/rotation/quaternions.ipynb
https://en.wikipedia.org/wiki/Quaternion
https://en.wikipedia.org/wiki/Noncommutative
https://en.wikipedia.org/wiki/Noncommutative
https://en.wikipedia.org/wiki/Anticommutative_property

There are even more ways to represent quaterions, for example as 2x2 complex matrices or as 4x4 real
matrices [McD10].

Unit Quaternions

Quite simply, unit quaternions are the set of all quaternions whose distance to the origin (0, (0, 0, 0))
equals 1. In R3, all elements with unit distance from the origin form the unit sphere (a.k.a. S2), which
is a two-dimensional curved space. Since quaternions inhabit R4, the unit quaternions form the unit
hypersphere (a.k.a. S3), which is a three-dimensional curved space.

One important unit quaternion is (1, (0, 0, 0)), sometimes written as 1, which corresponds to the real
number 1.

A Python implementation of unit quaternions is available in the class splines.quaternion.UnitQuaternion
(page 187).

Unit Quaternions as Rotations

Given a (normalized) rotation axis~n and a rotation angle α (in radians), we can create a corresponding
quaternion (which will have unit length):

q =
(

cos
α

2
,~n sin

α

2

)
Unit quaternions are a double cover over the rotation group (a.k.a. SO(3)62), which means that each
rotation can be associated with two distinct quaternions. More specifically, the antipodal points q and
−q represent the same rotation – see Negation (page 144) below.

More details can be found on Wikipedia63.

To get a bit of intuition, let’s plot a few quaternion rotations (with the help of helper.py).

[1]: from helper import angles2quat, plot_rotation

The quaternion 1 represents “no rotation at all”.

[2]: identity = angles2quat(0, 0, 0)
identity

[2]: UnitQuaternion(scalar=1.0, vector=(0.0, 0.0, 0.0))

[3]: a = angles2quat(90, 0, 0)
b = angles2quat(0, 35, 0)
c = angles2quat(0, 0, 45)

[4]: plot_rotation({
identity = 1 : identity,
a : a,
b : b,
c : c,

});

62 https://en.wikipedia.org/wiki/3D_rotation_group
63 https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation

139

https://en.wikipedia.org/wiki/3D_rotation_group
https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation
helper.py

identity = 1 a b c

Axes Conventions

When converting between rotation angles (see Euler/Tait–Bryan angles64) and unit quaternions, we
can freely choose from a multitude of axes conventions65. Here we choose a (global) coordinate system
where the x-axis points towards the right margin of the page and the y-axis points towards the top of
the page. We are using a right-handed coordinate system, which leaves the z-axis pointing out of the
page, towards the reader. The helper function angles2quat() takes three angles (in degrees) which are
applied in this order:

• azimuth: rotation around the (global) z-axis

• elevation: rotation around the (previously rotated local) x-axis

• roll: rotation around the (previously rotated local) y-axis

This is equivalent to applying the angles in the opposite order, but using a global frame of reference for
each rotation.

The sign of the rotation angles always follows the right-hand rule66.

Quaternion Multiplication

As mentioned above, quaternion multiplication (sometimes called Hamilton product) is noncommuta-
tive, i.e. the order of operands matters. When using unit quaternions to represent rotations, quaternion
multiplication can be used to apply rotations to other rotations. Given a rotation q0, we can apply an-
other rotation q1 by left-multiplication: q1q0. In other words, applying a rotation of q0 followed by a
rotation of q1 is equivalent to applying a single rotation q1q0. Note that q1 represents a rotation in the
global frame of reference.

When dealing with local frames of reference, the order of multiplications has to be reversed. Given a
rotation q2, which describes a new local coordinate system, we can apply a local rotation q3 (relative
to this new coordinate system) by right-multiplication: q2q3. In other words, applying a rotation of
q2 followed by a rotation of q3 (relative to the local coordinate system defined by q2) is equivalent to
applying a single rotation q2q3.

In general, changing the order of rotations changes the resulting rotation:

qmqn 6= qnqm

[5]: plot_rotation({ ab : a * b, ba : b * a});

64 https://en.wikipedia.org/wiki/Euler_angles
65 https://en.wikipedia.org/wiki/Axes_conventions
66 https://en.wikipedia.org/wiki/Right-hand_rule Rotations

140

https://en.wikipedia.org/wiki/Euler_angles
https://en.wikipedia.org/wiki/Axes_conventions
https://en.wikipedia.org/wiki/Right-hand_rule#Rotations

ab ba

However, there is an exception when all rotation axes are the same, in which case the rotation angles can
simply be added (in arbitrary order, of course).

The quaternion 1 = (1, (0, 0, 0)) is the identity element with regards to quaternion multiplication. A
multiplication with this (on either side) leads to an unchanged rotation.

Even though quaternion multiplication is non-commutative, it is still associative67, which means that if
there are multiple multiplications in a row, they can be grouped arbitrarily, leading to the same overall
result:

(q1q2)q3 = q1(q2q3)

[6]: plot_rotation({ $(bc)a$: (b * c) * a, $b(ca)$: b * (c * a)});

(bc)a b(ca)

Inverse

Themultiplicative inverse of a quaternion is written as q−1. When talking about rotations, this operation
leads to a new rotation with the same rotation axis but with negated angle (or equivalently, the same
angle with a flipped rotation axis).

[7]: plot_rotation({ b : b, b^{-1} : b.inverse()});

67 https://en.wikipedia.org/wiki/Associative_property

141

https://en.wikipedia.org/wiki/Associative_property

b b 1

By multiplying a rotation with its inverse, the original rotation can be undone: qq−1 = q−1q = 1. Since
both operands have the same rotation axis, the order doesn’t matter in this case.

For unit quaternions, the inverse q−1 equals the conjugate q. The conjugate of a quaternion is constructed
by negating its vector part (and keeping its scalar part unchanged). This can be achieved by negating
the rotation axis~n. Alternatively, we can negate the rotation angle, since sin(−φ) = − sin(φ) (antisym-
metric) and cos(−φ) = cos(φ) (symmetric).

q = (w,−~v) =
(

cos
α

2
,−~n sin

α

2

)
=

(
cos
−α

2
,~n sin

−α

2

)

Relative Rotation (Global Frame of Reference)

Given two rotations q0 and q1, we can try to find a third rotation q0,1 that rotates q0 into q1. Since we are
considering the global frame of reference, q0,1 must be left-multiplied with q0:

q0,1q0 = q1

Now we can right-multiply both sides with q0
−1:

q0,1q0q0
−1 = q1q0

−1

q0q0
−1 cancels out and we get:

q0,1 = q1q0
−1

Relative Rotation (Local Frame of Reference)

If q0,1 is supposed to be a rotation in the local frame of q0, we have to change the order of multiplication:

q0q0,1 = q1

Now we can left-multiply both sides with q0
−1:

q0
−1q0q0,1 = q0

−1q1

q0
−1q0 cancels out and we get:

q0,1 = q0
−1q1

142

Exponentiation

Raising a unit quaternion to an integer power simply means applying the same rotation multiple times:

[8]: plot_rotation({
$a^0 = 1$: a**0,
$a^1 = a$: a**1,
$a^2 = aa$: a**2,
$a^3 = aaa$: a**3,

});

a0 = 1 a1 = a a2 = aa a3 = aaa

It shouldn’t come as a surprise that q0 = 1 and q1 = q.

Using an exponent of−1 is equivalent to taking the inverse – see above (page 141). Negative integer expo-
nents apply the inverse rotationmultiple times. Non-integer exponents lead to partial rotations, with the
exponent k being proportional to the rotation angle. The rotation axis~n is unchanged by exponentiation.

qk =

(
cos

kα

2
,~n sin

kα

2

)
[9]: plot_rotation({

$a^1 = a$: a**1,
$a^{0.5}$: a**0.5,
$a^0 = 1$: a**0,
$a^{-0.5}$: a**-0.5,

});

a1 = a a0.5 a0 = 1 a 0.5

143

Negation

A quaternion can be negated by negating all 4 of its components. This corresponds to flipping its orien-
tation in 4D space (but keeping its direction and length). For unit quaternions, this means selecting the
diametrically opposite (antipodal) point on the unit hypersphere.

Due to the double cover propertymentioned above, negating a unit quaternion doesn’t change the rotation
it is representing.

[10]: plot_rotation({ c : c, $-c$: -c});

c c

Oneway to negate the scalar part of a unit quaternion is to add π to the argument of the cosine function,
since cos(φ + π) = − cos(φ). Because only half of the rotation appears in the argument of the cosine,
we have to add 2π to the rotation angle α, which brings us back to the original rotation. Adding 2π
to the rotation angle also negates the vector part of the unit quaternion (since sin(φ + π) = − sin(φ)),
assuming the rotation axis~n stays unchanged.

−q = (−w,−~v) =
(

cos
α + 2π

2
,~n sin

α + 2π

2

)

Canonicalization

When we are given multiple rotations and we want to represent them as quaternions, we have to take
care of the ambiguity caused by the double cover property – see Slerp Visualization (page 146) for an
example of this ambiguity.

One way to do that is to make sure that in a sequence of rotations (which we want to use as the control
points of a spline, for example), the angle (in 4D space) between neighboring quaternions is at most 90
degrees (which corresponds to a 180 degree rotation in 3D space). For any pair of quaternions where
this is not the case, one of the quaternions can simply be negated. The function splines.quaternion.canon-
icalized() (page 189) can be used to create an iterator of canonicalized quaternions from an iterable of
arbitrary quaternions.
. doc/rotation/quaternions.ipynb ends here.

The following section was generated from doc/rotation/slerp.ipynb .

3.2 Spherical Linear Interpolation (Slerp)

The term “Slerp” for “spherical linear interpolation” (a.k.a. “great arc in-betweening”) has been coined
by Shoemake [Sho85], section 3.3. It describes an interpolation (with constant angular velocity) along
the shortest path (a.k.a. geodesic) on the unit hypersphere between two quaternions q1 and q2. It is
defined as:

Slerp(q1, q2; u) = q1

(
q1
−1q2

)u

144

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/rotation/quaternions.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/rotation/slerp.ipynb

The parameter u moves from 0 (where the expression simplifies to q1) to 1 (where the expression sim-
plifies to q2).

The Wikipedia article for Slerp68 provides four equivalent ways to describe the same thing:

Slerp(q0, q1; t) = q0

(
q0
−1q1

)t

= q1

(
q1
−1q0

)1−t

=
(

q0q1
−1
)1−t

q1

=
(

q1q0
−1
)t

q0

Shoemake [Sho85] also provides an alternative formulation (attributed to Glenn Davis):

Slerp(q1, q2; u) =
sin(1− u)θ

sin θ
q1 +

sin uθ

sin θ
q2,

where the dot product q1 · q2 = cos θ.

Latter equation works for unit-length elements of any arbitrary-dimensional inner product space (i.e. a
vector space that also has an inner product), while the preceding equations only work for quaternions.

The Slerp function for quaternions is quite easy to implement …

[1]: def slerp(one, two, t):
"""Spherical Linear intERPolation."""
return (two * one.inverse())**t * one

… but for your convenience an implementation is also provided in splines.quaternion.slerp() (page 188).

Derivation

Before looking at the general case Slerp(q0, q1; t), which interpolates from q0 to q1, let’s look at the much
simpler case of interpolating from the identity 1 to some unit quaternion q.

1 = (1, (0, 0, 0))

q =
(

cos
α

2
,~n sin

α

2

)
Tomove along the great arc from 1 to q, we simply have to change the angle from 0 to α while the rotation
axis~n stays unchanged.

Slerp(1, q; t) =
(

cos
αt
2

,~n sin
αt
2

)
= qt, where 0 ≤ t ≤ 1

To generalize this to the great arc from q0 to q1, we can start with q0 and left-multiply an appropriate
Slerp using the relative rotation (global frame) (page 142) q0,1:

Slerp(q0, q1; t) = Slerp(1, q0,1; t) q0

Inserting q0,1 = q1q0
−1, we get:

68 https://en.wikipedia.org/wiki/Slerp Quaternion_Slerp

145

https://en.wikipedia.org/wiki/Slerp#Quaternion_Slerp

Slerp(q0, q1; t) =
(

q1q0
−1
)t

q0

Alternatively, we can startwith q0 and right-multiply an appropriate Slerp using the relative rotation (local
frame) (page 142) q0,1 = q0

−1q1:

Slerp(q0, q1; t) = q0 Slerp(1, q0,1; t) = q0

(
q0
−1q1

)t

We can also start with q1, swap q0 and q1 in the relative rotation and invert the parameter by using 1− t,
leading to the two further alternatives mentioned above.

Visualization

First, let’s import NumPy69 …

[2]: import numpy as np

… and a few helper functions from helper.py:

[3]: from helper import angles2quat, animate_rotations, display_animation

We can now define two example quaternions:

[4]: q1 = angles2quat(45, -20, -60)
q2 = angles2quat(-45, 20, 30)

Just out of curiosity, let’s use the method rotation_to() (page 188) to calculate the angle between the two
quaternions:

[5]: np.degrees(q1.rotation_to(q2).angle)

[5]: 123.9513586527906

If this angle is smaller than 180 degrees, we know that we will get the smallest difference in rotation.
If it is larger than 180 degrees, we can negate the second quaternion to get a smaller rotation – see
canonicalization (page 144).

[6]: ani_times = np.linspace(0, 1, 50)

We show both the original target quaternion and its antipodal point in this animation:

[7]: ani = animate_rotations({
slerp(q1, q2) : slerp(q1, q2, ani_times),
slerp(q1, -q2) : slerp(q1, -q2, ani_times),

})

[8]: display_animation(ani, default_mode= reflect)

Animations can only be shown in HTML output, sorry!

Let’s create some still images as well:

[9]: from helper import plot_rotations

69 https://numpy.org/

146

https://numpy.org/
helper.py

[10]: plot_times = np.linspace(0, 1, 9)

[11]: plot_rotations({
slerp(q1, q2) : slerp(q1, q2, plot_times),
slerp(q1, -q2) : slerp(q1, -q2, plot_times),

}, figsize=(8, 3))

slerp(q1, q2)

slerp(q1, -q2)

slerp(q1, q2) and slerp(q1, -q2) move along the same great circle, albeit in different directions. In
total, they cover half the circumference of that great circle, which means a rotation angle of 360 degrees.
Note that q2 and -q2 represent the same rotation (because of the double cover property).

Piecewise Slerp

The class PiecewiseSlerp (page 189) provides a rotation spline that consists of Slerp sections between the
given quaternions.

[12]: from splines.quaternion import PiecewiseSlerp

[13]: s = PiecewiseSlerp([
angles2quat(0, 0, 0),
angles2quat(90, 0, 0),
angles2quat(90, 90, 0),
angles2quat(90, 90, 90),

], grid=[0, 1, 2, 3, 6], closed=True)

[14]: ani = animate_rotations({
piecewise Slerp : s.evaluate(np.linspace(s.grid[0], s.grid[-1], 100)),

})

[15]: display_animation(ani, default_mode= loop)

Animations can only be shown in HTML output, sorry!

Each section has its own constant angular velocity.

147

Slerp vs. Nlerp

While Slerp interpolates along a great arc between two quaternions, it is also possible to interpolate
along a straight line (in four-dimensional quaternion space) between those two quaternions. The re-
sulting interpolant is not part of the unit hypersphere, i.e. the interpolated values are not unit quater-
nions. However, they can be normalized to become unit quaternions. This is called “normalized linear
interpolation”, in short Nlerp. The resulting interpolant travels through the same quaternions as Slerp
does, but it doesn’t do it with constant angular velocity.

[16]: from splines.quaternion import Quaternion

[17]: def lerp(one, two, t):
"""Linear intERPolation."""
one = np.asarray(one)
two = np.asarray(two)
return (1 - t) * one + t * two

[18]: def nlerp(one, two, t):
"""Normalized Linear intERPolation.

Linear interpolation in 4D quaternion space,
normalizing the result.

"""
if not np.isscalar(t):

If t is a list, return a list of unit quaternions
return [nlerp(one, two, t) for t in t]

*vector, scalar = lerp(one.xyzw, two.xyzw, t)
return Quaternion(scalar, vector).normalized()

As a first example, we try an angle below 180 degrees …

[19]: q1 = angles2quat(-60, 10, -10)
q2 = angles2quat(80, -35, -110)

[20]: np.degrees(q1.rotation_to(q2).angle)

[20]: 174.5768498146622

… which we can also quickly check by means of the dot product:

[21]: assert q1.dot(q2) > 0

[22]: ani_times = np.linspace(0, 1, 50)

[23]: ani = animate_rotations({
Slerp : slerp(q1, q2, ani_times),
Nlerp : nlerp(q1, q2, ani_times),

})

[24]: display_animation(ani, default_mode= reflect)

Animations can only be shown in HTML output, sorry!

Again, we plot some still images:

148

[25]: plot_rotations({
Slerp : slerp(q1, q2, plot_times),
Nlerp : nlerp(q1, q2, plot_times),

}, figsize=(8, 3))

Slerp

Nlerp

The start and end values are (bydefinition) the same, themiddle one is also the same (due to symmetry).
And in between, there are very slight differences. Since the differences are barely visible, we can try a
more extreme example:

[26]: q3 = angles2quat(-170, 0, 45)
q4 = angles2quat(120, -90, -45)

[27]: np.degrees(q3.rotation_to(q4).angle)

[27]: 268.27205892764954

Please note that this is a rotation by an angle of far more than 180 degrees!

[28]: assert q3.dot(q4) < 0

[29]: ani = animate_rotations({
Slerp : slerp(q3, q4, ani_times),
Nlerp : nlerp(q3, q4, ani_times),

})

[30]: display_animation(ani, default_mode= reflect)

Animations can only be shown in HTML output, sorry!

[31]: plot_rotations({
Slerp : slerp(q3, q4, plot_times),
Nlerp : nlerp(q3, q4, plot_times),

}, figsize=(8, 3))

149

Slerp

Nlerp

Now the difference is clearly visible, but depending on the application you might want to limit your
rotations to ±180 degrees anyway, so this might not be relevant.
. doc/rotation/slerp.ipynb ends here.

The following section was generated from doc/rotation/de-casteljau.ipynb .

3.3 De Casteljau’s AlgorithmWith Slerp

Shoemake [Sho85], who famously introduced quaternions to the field of computer graphics, suggests
to apply a variant of De Casteljau’s Algorithm (page 46) to a unit quaternion control polygon, using Slerp
(page 144) instead of linear interpolations.

[1]: def slerp(one, two, t):
"""Spherical Linear intERPolation."""
return (two * one.inverse())**t * one

We’ll also need NumPy and a few helpers from helper.py:

[2]: import numpy as np
from helper import angles2quat, plot_rotation, plot_rotations
from helper import animate_rotations, display_animation

“Cubic”

Shoemake [Sho85] only talks about the “cubic” case, consisting of three nested applications of Slerp.
Since this is done in a curved space, the resulting curve is of course not simply a polynomial of degree
3, but something quite a bit more involved. Therefore, we use the term “cubic” in quotes. Shoemake
doesn’t talk about the “degree” of the curves at all, they are only called “spherical Bézier curves”.

[3]: def cubic_de_casteljau(q0, q1, q2, q3, t):
"""De Casteljau s algorithm of "degree" 3 using Slerp."""
if not np.isscalar(t):

If t is a list, return a list of unit quaternions
return [cubic_de_casteljau(q0, q1, q2, q3, t) for t in t]

slerp_0_1 = slerp(q0, q1, t)
slerp_1_2 = slerp(q1, q2, t)
slerp_2_3 = slerp(q2, q3, t)
return slerp(

slerp(slerp_0_1, slerp_1_2, t),
(continues on next page)

150

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/rotation/slerp.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/rotation/de-casteljau.ipynb
helper.py

(continued from previous page)

slerp(slerp_1_2, slerp_2_3, t),
t,

)

To illustrate this, let’s define 4 unit quaternions that we can use as control points:

[4]: q0 = angles2quat(45, 0, 0)
q1 = angles2quat(0, -40, 0)
q2 = angles2quat(0, 70, 0)
q3 = angles2quat(-45, 0, 0)

[5]: plot_rotation({ q0 : q0, q1 : q1, q2 : q2, q3 : q3});

q0 q1 q2 q3

[6]: plot_rotations(
cubic_de_casteljau(q0, q1, q2, q3, np.linspace(0, 1, 9)),
figsize=(8, 1))

We can see that the curve starts with the first rotation and endswith the last one. The twomiddle control
quaternions q1 and q2 influence the shape of the rotation curve but they are not part of the interpolant
themselves.

[7]: ani = animate_rotations(
cubic_de_casteljau(q0, q1, q2, q3, np.linspace(0, 1, 100)))

[8]: display_animation(ani, default_mode= reflect)

Animations can only be shown in HTML output, sorry!

Arbitrary “Degree”

The class splines.quaternion.DeCasteljau (page 189) allows arbitrary numbers of unit quaternions per seg-
ment and therefore arbitrary “degrees”:

[9]: from splines.quaternion import DeCasteljau

[10]: s = DeCasteljau([
[

angles2quat(0, 0, 0),
(continues on next page)

151

(continued from previous page)

angles2quat(90, 0, 0),
],
[

angles2quat(90, 0, 0),
angles2quat(0, 0, 0),
angles2quat(0, 90, 0),

],
[

angles2quat(0, 90, 0),
angles2quat(0, 0, 0),
angles2quat(-90, 0, 0),
angles2quat(-90, 90, 0),

],
], grid=[0, 1, 3, 6])

[11]: ani = animate_rotations(s.evaluate(np.linspace(s.grid[0], s.grid[-1], 100)))

[12]: display_animation(ani, default_mode= reflect)

Animations can only be shown in HTML output, sorry!

Constant Angular Speed

Is there a way to construct a curve parameterized by arc length? This would be very useful.

---Shoemake [Sho85], section 6: “Questions”

Remember arc-length parameterization of Euclidean splines (page 135)? We used the class splines.Unit-
SpeedAdapter (page 185) which happens to be implemented in a way that it is also usable for rotation
splines, how convenient! The only requirement is that the second derivative of the wrapped spline
yields an angular velocity vector, which is nothing else than the instantaneous rotation axis scaled by
the angular speed.

[13]: from splines import UnitSpeedAdapter

[14]: s1 = DeCasteljau([[
angles2quat(90, 0, 0),
angles2quat(0, -45, 90),
angles2quat(0, 0, 0),
angles2quat(180, 0, 180),

]])

[15]: s2 = UnitSpeedAdapter(s1)

[16]: ani = animate_rotations({
non-constant speed : s1.evaluate(

np.linspace(s1.grid[0], s1.grid[-1], 100)),
constant speed : s2.evaluate(

np.linspace(s2.grid[0], s2.grid[-1], 100)),
})

[17]: display_animation(ani, default_mode= reflect)

Animations can only be shown in HTML output, sorry!

152

Joining Curves

Until now, we have assumed that four control quaternions are given for each “cubic” segment.

If a list of quaternions is given, which is supposed to be interpolated, the intermediate control quater-
nions can be computed from neighboring quaternions as shown in the notebook about uniform Cat-
mull–Rom-like quaternion splines (page 153).
. doc/rotation/de-casteljau.ipynb ends here.

The following section was generated from doc/rotation/catmull-rom-uniform.ipynb .

3.4 Uniform Catmull–Rom-Like Quaternion Splines

Wehave seen how to useDeCasteljau’s algorithmwith Slerp (page 150) to create “cubic” Bézier-like quater-
nion curve segments. However, if we only have a sequence of rotations to be interpolated and no ad-
ditional Bézier control quaternions are provided, it would be great if we could compute the missing
control quaternions automatically from neighboring quaternions.

In the notebook about (uniform) Euclidean Catmull–Rom splines (page 82) we have already seen how this
can be done for splines in Euclidean space:

x̃(+)
i = xi +

ẋi
3

x̃(−)i = xi −
ẋi
3

Note that the velocity vectors ẋi live in the same Euclidean space as the position vectors xi. We can
simply add a fraction of a velocity to a position and we get a new position in return.

Applying this to rotations is unfortunately not very straightforward. When unit quaternions are moving
along the the unit hypersphere, their velocity vectors are tangential to that hypersphere, which means
that the velocity vectors are generally not unit quaternions themselves. Furthermore, adding a (non-zero
length) tangent vector to a unit quaternion never leads to a unit quaternion as a result.

Instead of using tangent vectors, we can introduce a (yet unknown) relative quaternion (in the global frame
of reference) (page 142) qi,offset:

q̃(+)
i = qi,offset

1
3 qi

q̃(−)i = qi,offset
− 1

3 qi

When trying to obtain qi,offset, the problem is that there are many equivalent ways to write the equation
for tangent vectors in Euclidean space …

ẋi =
xi+1 − xi−1

2
=

(xi − xi−1) + (xi+1 − xi)

2
=

xi − xi−1

2
+

xi+1 − xi
2

… but “translating” them to quaternions will lead to different results!

For the following experiments, let’s define three quaternions using the angles2quat() function from
helper.py:

[1]: from helper import angles2quat

[2]: q3 = angles2quat(0, 0, 0)
q4 = angles2quat(0, 45, -10)
q5 = angles2quat(90, 0, -90)

153

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/rotation/de-casteljau.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/rotation/catmull-rom-uniform.ipynb
helper.py

Relative Rotations

As a first attempt, we can try to “translate” the equation …

ẋi =
xi+1 − xi−1

2

… to unit quaternions like this:

qi,offset
?
=
(

qi+1qi−1
−1
) 1

2

[3]: offset_a = q3.rotation_to(q5)**(1/2)

We’ll see later whether that’s reasonable or not.

For the next few examples, we define the relative rotations (page 142) associated with the the incoming
and the outgoing chord:

qin = qiqi−1
−1

qout = qi+1qi
−1

[4]: q_in = q3.rotation_to(q4)
q_out = q4.rotation_to(q5)

The next equation …

ẋi =
(xi − xi−1) + (xi+1 − xi)

2

… can be “translated” to unit quaternions like this:

qi,offset
?
= (qoutqin)

1
2

[5]: offset_b = (q_out * q_in)**(1/2)

We can see that this is actually equivalent to the previous one:

[6]: max(map(abs, (offset_b - offset_a).xyzw))

[6]: 1.1102230246251565e-16

In the Euclidean case, the order doesn’t matter, but in the quaternion case …

qi,offset
?
= (qinqout)

1
2

[7]: offset_c = (q_in * q_out)**(1/2)

… there is a (quite large!) difference:

[8]: max(map(abs, (offset_b - offset_c).xyzw))

[8]: 0.2563304531880035

154

Based on the equation …

ẋi =
xi − xi−1

2
+

xi+1 − xi
2

… we can try another pair of equations …

qi,offset
?
=
(

qout
1
2 qin

1
2

)
[9]: offset_d = (q_out**(1/2) * q_in**(1/2))

qi,offset
?
=
(

qin
1
2 qout

1
2

)
[10]: offset_e = (q_in**(1/6) * q_out**(1/6))

… but they are also non-symmetric:

[11]: max(map(abs, (offset_e - offset_d).xyzw))

[11]: 0.20225984693486293

Let’s try a slightly more involved variant, where the order of qin and qout can actually be reversed:

qi,offset
?
=
(

qoutqin−1
) 1

2 qin =
(

qinqout−1
) 1

2 qout

[12]: offset_f = (q_out * q_in**-1)**(1/2) * q_in

[13]: offset_g = (q_in * q_out**-1)**(1/2) * q_out

[14]: max(map(abs, (offset_g - offset_f).xyzw))

[14]: 1.1102230246251565e-16

It is nice to have symmetric behavior, but the curvature of the unit hypersphere still causes an error. We
can check that by scaling down the components before the calculation (leading to a smaller curvature)
and scaling up the result:

qi,offset
?
=

((
qout

1
10 qin−

1
10

) 1
2 qin

1
10

)10

=

((
qin

1
10 qout−

1
10

) 1
2 qout

1
10

)10

[15]: offset_h = ((q_out**(1/10) * q_in**(-1/10))**(1/2) * q_in**(1/10))**10

[16]: offset_i = ((q_in**(1/10) * q_out**(-1/10))**(1/2) * q_out**(1/10))**10

[17]: max(map(abs, (offset_h - offset_i).xyzw))

[17]: 2.1094237467877974e-15

[18]: offset_j = ((q_out**(1/100) * q_in**(-1/100))**(1/2) * q_in**(1/100))**100

[19]: offset_k = ((q_in**(1/100) * q_out**(-1/100))**(1/2) * q_out**(1/100))**100

155

[20]: max(map(abs, (offset_j - offset_k).xyzw))

[20]: 1.4277468096679513e-13

If we choose a larger scaling factor, the the error caused by curvature becomes smaller (as we will see
in the next section). However, the numerical error gets bigger. We cannot scale down the components
arbitrarily, but there is a differentmathematical tool that we can use, which boils down to the same thing,
as we’ll see in the next section.

Tangent Space

The logarithmic map operation transforms a unit quaternion into a vector that’s a member of the tangent
space at the identity quaternion (a.k.a. 1). In this tangent space – which is a flat, three-dimensional
Euclidean space – we can add and scale components without worrying about curvature. Using the
exponential map operation, the result can be projected back onto the unit hypersphere. This way, we can
take the equation for the tangent vector in Euclidean space …

ẋi =
(xi − xi−1) + (xi+1 − xi)

2

… and “translate” it into unit quaternions …

qi,offset
?
= exp

(
ln(qin) + ln(qout)

2

)
[21]: from splines.quaternion import UnitQuaternion

[22]: offset_l = UnitQuaternion.exp_map((q_in.log_map() + q_out.log_map()) / 2)

This approach is implemented in the splines.quaternion.CatmullRom (page 190) class.

Let’s compare this to the variants from the previous section:

[23]: max(map(abs, (offset_l - offset_f).xyzw))

[23]: 0.01742323752655639

[24]: max(map(abs, (offset_l - offset_h).xyzw))

[24]: 0.000167758442754129

[25]: max(map(abs, (offset_l - offset_j).xyzw))

[25]: 1.6769343111344703e-06

Increasing the scaling factor from the previous section will get us closer and closer, but only until the
numerical errors eventually take over.

156

Example

After all those more or less successful experiments, let’s show an example with actual rotations.

[26]: def offset(q_1, q0, q1):
q_in = q0 * q_1.inverse()
q_out = q1 * q0.inverse()
return UnitQuaternion.exp_map((q_in.log_map() + q_out.log_map()) / 2)

We’ll use the DeCasteljau (page 189) class to create a Bézier-like curve from the given control points,
using canonicalized() (page 189) to avoid angles greater than 180 degrees.

[27]: from splines.quaternion import DeCasteljau, canonicalized

Also, some helper functions from helper.py will come in handy.

[28]: from helper import animate_rotations, display_animation

We don’t want to worry about end conditions here, so let’s create a closed curve.

[29]: def create_closed_curve(rotations):
rotations = list(canonicalized(rotations + rotations[:2]))
control_points = []
for q_1, q0, q1 in zip(rotations, rotations[1:], rotations[2:]):

q_offset = offset(q_1, q0, q1)
control_points.extend([

q_offset**(-1/3) * q0,
q0,
q0,
q_offset**(1/3) * q0])

control_points = control_points[-2:] + control_points[:-2]
segments = list(zip(*[iter(control_points)] * 4))
return DeCasteljau(segments)

[30]: rotations = [
angles2quat(0, 0, 180),
angles2quat(0, 45, 90),
angles2quat(90, 45, 0),
angles2quat(90, 90, -90),
angles2quat(180, 0, -180),
angles2quat(-90, -45, 180),

]

[31]: s = create_closed_curve(rotations)

[32]: import numpy as np

[33]: times = np.linspace(0, len(rotations), 200, endpoint=False)

[34]: ani = animate_rotations(s.evaluate(times))

[35]: display_animation(ani, default_mode= loop)

Animations can only be shown in HTML output, sorry!

157

helper.py

Shoemake’s Approach

In section 4.2, Shoemake [Sho85] provides two function definitions:

Double(p, q) = 2(p · q)q− p

Bisect(p, q) =
p + q
‖p + q‖

[36]: def double(p, q):
return 2 * p.dot(q) * q - p

[37]: def bisect(p, q):
return (p + q).normalized()

Given three successive key quaternions qn−1, qn and qn+1, these functions are used to compute control
quaternions bn (controlling the incoming tangent of qn) and an (controlling the outgoing tangent of qn):

an = Bisect(Double(qn−1, qn), qn+1)

bn = Double(an, qn)

It is unclear where these equations come from, we only get a little hint:

For the numerically knowledgeable, this construction approximates the derivative at points
of a sampled function by averaging the central differences of the sample sequence.

---Shoemake [Sho85], footnote on page 249

[38]: def shoemake_control_quaternions(q_1, q0, q1):
"""Shoemake s control quaternions.

Given three key quaternions, return the control quaternions
preceding and following the middle one.

Actually, the great arc distance of the returned quaternions to q0
still has to be reduced to 1/3 of the distance
to get the proper control quaternions (see the note below).

"""
a = bisect(double(q_1, q0), q1)
b = double(a, q0).normalized()
return b, a

Normalization of bn is not explicitly mentioned in the paper, but even though the results have a length
very close to 1.0, we still have to call normalized() to turn the Quaternion (page 186) result into a
UnitQuaternion (page 187).

[39]: b, a = shoemake_control_quaternions(q3, q4, q5)

The results are close (but by far not identical) to the tangent space approach from above:

[40]: max(map(abs, (a - offset_l * q4).xyzw))

[40]: 0.013831724198409168

158

[41]: max(map(abs, (b - offset_l.inverse() * q4).xyzw))

[41]: 0.018852903209093046

Note

Shoemake’s result has to be scaled by 1
3 , just as we did with qi,offset above:

A simple check proves the curve touches qn and qn+1 at its ends. A rather challenging
differentiation shows it is tangent there to the segments determined by an and bn+1. How-
ever, as with Bézier’s original curve, the magnitude of the tangent is three times that of
the segment itself. That is, we are spinning three times faster than spherical interpola-
tion along the arc. Fortunately we can correct the speed by merely truncating the end
segments to one third their original length, so that an is closer to qn and bn+1 closer to
qn+1.

---Shoemake [Sho85], section 4.4: “Tangents revisited”

. doc/rotation/catmull-rom-uniform.ipynb ends here.

The following section was generated from doc/rotation/catmull-rom-non-uniform.ipynb .

3.5 Non-Uniform Catmull–Rom-Like Rotation Splines

What is the best way to allow varying intervals between sequence points in parameter space?

---Shoemake [Sho85], section 6: “Questions”

In the uniform case (page 153) we have used De Casteljau’s algorithm with Slerp (page 150) to create a “cu-
bic” rotation spline. To extend this to the non-uniform case, we can transform the parameter t→ t−ti

ti+1−ti
for each spline segment – as shown in the notebook about non-uniform Euclidean Bézier splines (page 59).
This is implemented in the class splines.quaternion.DeCasteljau (page 189).

Assuming the control points at the start and the end of each segment are given (from a sequence of
quaternions to be interpolated), we’ll also need away to calculate themissing two control points. For in-
spiration, we can have a look at the notebook about non-uniform (Euclidean) Catmull–Rom splines (page 87)
which provides these equations:

vi =
xi+1 − xi
ti+1 − ti

ẋi =
(ti+1 − ti) vi−1 + (ti − ti−1) vi

ti+1 − ti−1

x̃(+)
i = xi +

(ti+1 − ti) ẋi
3

x̃(−)i = xi −
(ti − ti−1) ẋi

3

With the relative rotation (page 142) δi = qi+1qi
−1 we can try to “translate” this to quaternions (using

some vector operations in the tangent space):

159

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/rotation/catmull-rom-uniform.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/rotation/catmull-rom-non-uniform.ipynb

~ρi =
ln(δi)

ti+1 − ti

~ωi =
(ti+1 − ti)~ρi−1 + (ti − ti−1)~ρi

ti+1 − ti−1

q̃(+)
i

?
= exp

(
ti+1 − ti

3
~ωi

)
qi

q̃(−)i
?
= exp

(
ti − ti−1

3
~ωi

)−1
qi,

where~ρi is the angular velocity along the great arc from qi to qi+1 within the parameter interval from ti
to ti+1 and ~ωi is the angular velocity of the Catmull–Rom-like quaternion curve at the control point qi

(which is reached at parameter value ti). Finally, q̃(−)i and q̃(+)
i are the Bézier-like control quaternions

before and after qi, respectively.

[1]: from splines.quaternion import UnitQuaternion

def cr_control_quaternions(qs, ts):
q_1, q0, q1 = qs
t_1, t0, t1 = ts
rho_in = q_1.rotation_to(q0).log_map() / (t0 - t_1)
rho_out = q0.rotation_to(q1).log_map() / (t1 - t0)
w0 = ((t1 - t0) * rho_in + (t0 - t_1) * rho_out) / (t1 - t_1)
return [

UnitQuaternion.exp_map(-w0 * (t0 - t_1) / 3) * q0,
UnitQuaternion.exp_map(w0 * (t1 - t0) / 3) * q0,

]

This approach is also implemented in the class splines.quaternion.CatmullRom (page 190).

To illustrate this, let’s load NumPy, a few helpers from helper.py and splines.quaternion.canonicalized()
(page 189).

[2]: import numpy as np
np.set_printoptions(precision=4)
from helper import angles2quat, animate_rotations, display_animation
from splines.quaternion import canonicalized

The following function can create a closed spline using the above method to calculate control quater-
nions.

[3]: from splines.quaternion import DeCasteljau

def catmull_rom_curve(rotations, grid):
"""Create a closed Catmull-Rom-like quaternion curve."""
assert len(rotations) + 1 == len(grid)
rotations = rotations[-1:] + rotations + rotations[:2]
Avoid angles of more than 180 degrees (including the added rotations):
rotations = list(canonicalized(rotations))
first_interval = grid[1] - grid[0]
last_interval = grid[-1] - grid[-2]
extended_grid = [grid[0] - last_interval, *grid, grid[-1] + first_interval]
control_points = []
for qs, ts in zip(

zip(rotations, rotations[1:], rotations[2:]),
zip(extended_grid, extended_grid[1:], extended_grid[2:])):

q_before, q_after = cr_control_quaternions(qs, ts)
(continues on next page)

160

helper.py

(continued from previous page)

control_points.extend([q_before, qs[1], qs[1], q_after])
control_points = control_points[2:-2]
segments = list(zip(*[iter(control_points)] * 4))
return DeCasteljau(segments, grid)

To try this out, we need a few example quaternions and time instances:

[4]: rotations1 = [
angles2quat(0, 0, 180),
angles2quat(0, 45, 90),
angles2quat(90, 45, 0),
angles2quat(90, 90, -90),
angles2quat(180, 0, -180),
angles2quat(-90, -45, 180),

]

[5]: grid1 = 0, 0.5, 2, 5, 6, 7, 9

[6]: cr = catmull_rom_curve(rotations1, grid1)

[7]: def evaluate(spline, frames=200):
times = np.linspace(

spline.grid[0], spline.grid[-1], frames, endpoint=False)
return spline.evaluate(times)

[8]: ani = animate_rotations(evaluate(cr))

[9]: display_animation(ani, default_mode= loop)

Animations can only be shown in HTML output, sorry!

Parameterization

Instead of choosing arbitrary time intervals between control quaternions (via the grid argument), we
can calculate time intervals based on the control quaternions themselves.

[10]: rotations2 = [
angles2quat(90, 0, -45),
angles2quat(179, 0, 0),
angles2quat(181, 0, 0),
angles2quat(270, 0, -45),
angles2quat(0, 90, 90),

]

We have seen uniform parameterization already in the previous notebook (page 153), where each param-
eter interval is set to 1:

[11]: uniform = catmull_rom_curve(rotations2, grid=range(len(rotations2) + 1))

For chordal parameterization of Euclidean splines (page 72), we used the Euclidean distance as basis for
calculating the time intervals. For rotation splines, it makes more sense to use rotation angles, which are
proportional to the lengths of the great arcs between control quaternions:

161

[12]: angles = np.array([
a.rotation_to(b).angle
for a, b in zip(rotations2, rotations2[1:] + rotations2[:1])])

angles

[12]: array([1.7027, 0.0349, 1.7027, 2.5936, 1.7178])

The values are probably easier to understand when we show them in degrees:

[13]: np.degrees(angles)

[13]: array([97.5592, 2. , 97.5592, 148.6003, 98.4211])

[14]: chordal_grid = np.concatenate([[0], np.cumsum(angles)])

[15]: chordal = catmull_rom_curve(rotations2, grid=chordal_grid)

For centripetal parameterization of Euclidean splines (page 73), we used the square root of the Euclidean
distances, here we use the square root of the rotation angles:

[16]: centripetal_grid = np.concatenate([[0], np.cumsum(np.sqrt(angles))])

[17]: centripetal = catmull_rom_curve(rotations2, grid=centripetal_grid)

[18]: ani = animate_rotations({
uniform : evaluate(uniform),
centripetal : evaluate(centripetal),
chordal : evaluate(chordal),

})

[19]: display_animation(ani, default_mode= loop)

Animations can only be shown in HTML output, sorry!

The class splines.quaternion.CatmullRom (page 190) provides a parameter alpha that allows arbitrary
parameterization between uniform and chordal – see also parameterized parameterization of Euclidean splines
(page 73).
. doc/rotation/catmull-rom-non-uniform.ipynb ends here.

The following section was generated from doc/rotation/kochanek-bartels.ipynb .

3.6 Kochanek–Bartels-like Rotation Splines

RememberKochanek–Bartels splines in Euclidean space (page 98)? We can try to “translate” those to quater-
nions by usingDeCasteljau’s algorithmwith Slerp (page 150). We only need away to create the appropriate
incoming and outgoing control quaternions, similarly to what we did to create Catmull–Rom-like rotation
splines (page 159).

We are only considering the more general non-uniform case here. The uniform case can be obtained by
simply using time instances ti with a step size of 1.

In the notebook about non-uniform Euclidean Kochanek–Bartels splines (page 109) we showed the following
equations for the incoming tangent vector ẋ(−)i and the outgoing tangent vector ẋ(+)

i at vertex xi (which
corresponds to the parameter value ti):

162

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/rotation/catmull-rom-non-uniform.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/rotation/kochanek-bartels.ipynb

ai = (1− Ti)(1 + Ci)(1 + Bi)

bi = (1− Ti)(1− Ci)(1− Bi)

ci = (1− Ti)(1− Ci)(1 + Bi)

di = (1− Ti)(1 + Ci)(1− Bi)

ẋ(+)
i =

ai(ti+1 − ti) vi−1 + bi(ti − ti−1) vi
ti+1 − ti−1

ẋ(−)i =
ci(ti+1 − ti) vi−1 + di(ti − ti−1) vi

ti+1 − ti−1
,

where vi =
xi+1−xi
ti+1−ti

.

Given those tangent vectors, we know the equations for the incoming control value x̃(−)i and the outgoing
control value x̃(+)

i from the notebook about non-uniform Euclidean Catmull–Rom splines (page 87):

x̃(+)
i = xi +

(ti+1 − ti)

3
ẋ(+)

i

x̃(−)i = xi −
(ti − ti−1)

3
ẋ(−)i

We can try to “translate” those equations to quaternions (using some vector operations in the tangent
space):

~ρi =
ln(δi)

ti+1 − ti

~ω
(+)
i =

ai(ti+1 − ti)~ρi−1 + bi(ti − ti−1)~ρi
ti+1 − ti−1

~ω
(−)
i =

ci(ti+1 − ti)~ρi−1 + di(ti − ti−1)~ρi
ti+1 − ti−1

q̃(+)
i

?
= exp

(
ti+1 − ti

3
~ω
(+)
i

)
qi

q̃(−)i
?
= exp

(
ti − ti−1

3
~ω
(−)
i

)−1
qi,

where δi = qi+1qi
−1 is the relative rotation (page 142) from qi to qi+1, ~ρi is the angular velocity along the

great arc from qi to qi+1 within the parameter interval from ti to ti+1, ~ω
(−)
i is the incoming angular veloc-

ity of the Kochanek–Bartels-like quaternion curve at the control point qi (which is reached at parameter
value ti) and ~ω

(+)
i is the outgoing angular velocity. Finally, q̃(−)i and q̃(+)

i are the control quaternions
before and after qi, respectively.

A Python implementation of these equations is available in the class splines.quaternion.KochanekBartels
(page 189).

[1]: from splines.quaternion import KochanekBartels

163

Examples

This is all a bit abstract, so let’s try a few of those TCB values to see their influence on the rotation spline.

For comparison, you can have a look at the examples for Euclidean Kochanek–Bartels splines (page 98).

As so often, we import NumPy and a few helpers from helper.py:

[2]: import numpy as np
from helper import angles2quat, animate_rotations, display_animation

Let’s define a few example rotations …

[3]: rotations = [
angles2quat(0, 0, 0),
angles2quat(90, 0, -45),
angles2quat(-45, 45, -90),
angles2quat(135, -35, 90),
angles2quat(90, 0, 0),

]

… and a helper function that allows us to try out different TCB values:

[4]: def show_tcb(tcb):
"""Show an animation of rotations with the given TCB values."""
if not isinstance(tcb, dict):

tcb = { : tcb}
result = {}
for name, tcb in tcb.items():

s = KochanekBartels(
rotations,
alpha=0.5,
endconditions= closed ,
tcb=tcb,

)
times = np.linspace(s.grid[0], s.grid[-1], 100, endpoint=False)
result[name] = s.evaluate(times)

display_animation(animate_rotations(result))

When using the default TCB values, a Catmull–Rom-like spline is generated:

[5]: show_tcb([0, 0, 0])

Animations can only be shown in HTML output, sorry!

We can vary tension (T) …

[6]: show_tcb({
T = 1 : [1, 0, 0],
T = 0.5 : [0.5, 0, 0],
T = -0.5 : [-0.5, 0, 0],
T = -1 : [-1, 0, 0],

})

Animations can only be shown in HTML output, sorry!

… continuity (C) …

[7]: show_tcb({
C = -1 : [0, -1, 0],
C = -0.5 : [0, -0.5, 0],

(continues on next page)

164

helper.py

(continued from previous page)

C = 0.5 : [0, 0.5, 0],
C = 1 : [0, 1, 0],

})

Animations can only be shown in HTML output, sorry!

… and bias (B):

[8]: show_tcb({
B = 1 : [0, 0, 1],
B = 0.5 : [0, 0, 0.5],
B = -0.5 : [0, 0, -0.5],
B = -1 : [0, 0, -1],

})

Animations can only be shown in HTML output, sorry!

Using the largest tension value (T = 1) produces the same rotations as using the smallest continuity
value (C = −1). However, the timing is different. With large tension values, rotation slows down close
to the control points. With small continuity, angular velocity varies less.

[9]: show_tcb({
T = 1 : [1, 0, 0],
C = -1 : [0, -1, 0],

})

Animations can only be shown in HTML output, sorry!

Just like in the Euclidean case, B = −1 followed by B = 1 can be used to create linear – i.e. Slerp
(page 144) – segments.

[10]: show_tcb({
Catmull–Rom : [0, 0, 0],
2 linear segments : [

(0, 0, 1),
(0, 0, 0),
(0, 0, -1),
(0, 0, 1),
(0, 0, -1),

],
C = -1 : [0, -1, 0],

})

Animations can only be shown in HTML output, sorry!
. doc/rotation/kochanek-bartels.ipynb ends here.

The following section was generated from doc/rotation/end-conditions-natural.ipynb .

3.7 “Natural” End Conditions

In the notebook about “natural” end conditions for Euclidean splines (page 120)we have derived the following
equations for calculating the second and penultimate control points of cubic Bézier splines:

x̃(+)
0 =

x0 + x̃(−)1
2

x̃(−)N−1 =
xN−1 + x̃(+)

N−2
2

165

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/rotation/kochanek-bartels.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/rotation/end-conditions-natural.ipynb

These equations can be “translated” to quaternions like this:

q̃(+)
0 =

(
q̃(−)1 q0

−1
) 1

2 q0

q̃(−)N−1 =
(

q̃(+)
N−2qN−1

−1
) 1

2 qN−1

When considering that the control polygon starts with the quaternions
(

q0, q̃(+)
0 , q̃(−)1 , q1, q̃(+)

1 , . . .
)
and

ends with
(

. . . , qN−2, q̃(+)
N−2, q̃(−)N−1, qN−1

)
, we can see that the equations are symmetrical. The resulting

control quaternion is calculated as the rotation half-way between the first and third control quaternion,
counting either from the beginning (q0) or the end (qN−1) of the spline.

[1]: def natural_end_condition(first, third):
"""Return second control quaternion given the first and third.

This also works when counting from the end of the spline.

"""
return first.rotation_to(third)**(1 / 2) * first

Examples

Let’s first import NumPy, a few helpers from helper.py and the class splines.quaternion.DeCasteljau
(page 189):

[2]: import numpy as np
from helper import angles2quat, animate_rotations, display_animation
from splines.quaternion import DeCasteljau

Furthermore, let’s define a helper function for evaluating a single spline segment:

[3]: def calculate_rotations(control_quaternions):
times = np.linspace(0, 1, 50)
return DeCasteljau(

segments=[control_quaternions],
).evaluate(times)

[4]: q0 = angles2quat(45, 0, 0)
q1 = angles2quat(-45, 0, 0)

[5]: q1_control = angles2quat(-45, 0, -90)

[6]: ani = animate_rotations({
natural begin : calculate_rotations(

[q0, natural_end_condition(q0, q1_control), q1_control, q1]),
})

[7]: display_animation(ani, default_mode= reflect)

Animations can only be shown in HTML output, sorry!

[8]: q0_control = angles2quat(45, 0, 90)

166

helper.py

[9]: ani = animate_rotations({
natural end : calculate_rotations(

[q0, q0_control, natural_end_condition(q1, q0_control), q1]),
})

[10]: display_animation(ani, default_mode= reflect)

Animations can only be shown in HTML output, sorry!
. doc/rotation/end-conditions-natural.ipynb ends here.

The following section was generated from doc/rotation/barry-goldman.ipynb .

3.8 Barry–Goldman AlgorithmWith Slerp

We can try to use the Barry–Goldman algorithm for non-uniform Euclidean Catmull–Rom splines (page 89)
using Slerp (page 144) instead of linear interpolations, just as we have done withDe Casteljau’s algorithm
(page 150).

[1]: def slerp(one, two, t):
"""Spherical Linear intERPolation."""
return (two * one.inverse())**t * one

[2]: def barry_goldman(rotations, times, t):
"""Calculate a spline segment with the Barry-Goldman algorithm.

Four quaternions and the corresponding four time values
have to be specified. The resulting spline segment is located
between the second and third quaternion. The given time *t*
must be between the second and third time value.

"""
q0, q1, q2, q3 = rotations
t0, t1, t2, t3 = times
return slerp(

slerp(
slerp(q0, q1, (t - t0) / (t1 - t0)),
slerp(q1, q2, (t - t1) / (t2 - t1)),
(t - t0) / (t2 - t0)),

slerp(
slerp(q1, q2, (t - t1) / (t2 - t1)),
slerp(q2, q3, (t - t2) / (t3 - t2)),
(t - t1) / (t3 - t1)),

(t - t1) / (t2 - t1))

To illustrate this, let’s import NumPy and a few helpers from helper.py:

[3]: import numpy as np
from helper import angles2quat, plot_rotation, plot_rotations
from helper import animate_rotations, display_animation

[4]: q0 = angles2quat(45, 0, 0)
q1 = angles2quat(0, -40, 0)
q2 = angles2quat(0, 70, 0)
q3 = angles2quat(-45, 0, 0)

[5]: t0 = 0
t1 = 1

(continues on next page)

167

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/rotation/end-conditions-natural.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/rotation/barry-goldman.ipynb
helper.py

(continued from previous page)

t2 = 5
t3 = 8

[6]: plot_rotation({ q0 : q0, q1 : q1, q2 : q2, q3 : q3});

q0 q1 q2 q3

[7]: plot_rotations([
barry_goldman([q0, q1, q2, q3], [t0, t1, t2, t3], t)
for t in np.linspace(t1, t2, 9)

], figsize=(8, 1))

[8]: ani = animate_rotations([
barry_goldman([q0, q1, q2, q3], [t0, t1, t2, t3], t)
for t in np.linspace(t1, t2, 50)

])

[9]: display_animation(ani, default_mode= reflect)

Animations can only be shown in HTML output, sorry!

For the next example, we use the class splines.quaternion.BarryGoldman (page 190):

[10]: from splines.quaternion import BarryGoldman

[11]: rotations = [
angles2quat(0, 0, 180),
angles2quat(0, 45, 90),
angles2quat(90, 45, 0),
angles2quat(90, 90, -90),
angles2quat(180, 0, -180),
angles2quat(-90, -45, 180),

]

[12]: bg1 = BarryGoldman(rotations, alpha=0.5)

For comparison, we also create a Catmull–Rom-like quaternion spline (page 159) using the class
splines.quaternion.CatmullRom (page 190):

[13]: from splines.quaternion import CatmullRom

168

[14]: cr1 = CatmullRom(rotations, alpha=0.5, endconditions= closed)

[15]: def evaluate(spline, frames=200):
times = np.linspace(

spline.grid[0], spline.grid[-1], frames, endpoint=False)
return spline.evaluate(times)

[16]: ani = animate_rotations({
Barry–Goldman : evaluate(bg1),
Catmull–Rom-like : evaluate(cr1),

})
display_animation(ani, default_mode= loop)

Animations can only be shown in HTML output, sorry!

Don’t worry if you don’t see any difference, the two are indeed extremely similar:

[17]: max(max(map(abs, q.xyzw)) for q in (evaluate(bg1) - evaluate(cr1)))

[17]: 0.0026694474661510537

However, when different time values are chosen, the difference between the two can become significantly
bigger.

[18]: grid = 0, 0.5, 1, 5, 6, 7, 10

[19]: bg2 = BarryGoldman(rotations, grid)
cr2 = CatmullRom(rotations, grid, endconditions= closed)

[20]: ani = animate_rotations({
Barry–Goldman : evaluate(bg2),
Catmull–Rom-like : evaluate(cr2),

})
display_animation(ani, default_mode= loop)

Animations can only be shown in HTML output, sorry!

Constant Angular Speed

A big advantage of De Casteljau’s algorithm is that when evaluating a spline at a given parameter value,
it directly provides the corresponding tangent vector. When using the Barry–Goldman algorithm, the
tangent vector has to be calculated separately, which makes re-parameterization for constant angular
speed very inefficient.

[21]: class BarryGoldmanWithDerivative(BarryGoldman):

delta_t = 0.000001

def evaluate(self, t, n=0):
"""Evaluate quaternion or angular velocity."""
if not np.isscalar(t):

return np.array([self.evaluate(t, n) for t in t])
if n == 0:

return super().evaluate(t)
elif n == 1:

NB: We move the interval around because
we cannot access times before and after

(continues on next page)

169

(continued from previous page)

the first and last time, respectively.
fraction = (t - self.grid[0]) / (self.grid[-1] - self.grid[0])
before = super().evaluate(t - fraction * self.delta_t)
after = super().evaluate(t + (1 - fraction) * self.delta_t)
NB: Double angle
return (after * before.inverse()).log_map() * 2 / self.delta_t

else:
raise ValueError(Unsupported n: {!r} .format(n))

[22]: from splines import UnitSpeedAdapter

[23]: bg3 = UnitSpeedAdapter(BarryGoldmanWithDerivative(rotations, alpha=0.5))

Warning

Evaluating this spline takes a long time!

[24]: %%time
bg3_evaluated = evaluate(bg3)

CPU times: user 1min 4s, sys: 35.2 ms, total: 1min 4s
Wall time: 1min 4s

[25]: ani = animate_rotations({
non-constant speed : evaluate(bg1),
constant speed : bg3_evaluated,

})

[26]: display_animation(ani, default_mode= loop)

Animations can only be shown in HTML output, sorry!
. doc/rotation/barry-goldman.ipynb ends here.

The following section was generated from doc/rotation/squad.ipynb .

3.9 Spherical Quadrangle Interpolation (Squad)

The Squad method was introduced by Shoemake [Sho87]. For a long time, his paper was not available
online, but thanks to the nice folks at the Computer History Museum70 (who only suggested a com-
pletely voluntary donation71), it is now available as PDF file72 on their website73.

The main argument for using Squad over De Casteljaus’s algorithm with Slerp (page 150) is computational
efficiency:

Boehm [Boe82], in comparing different geometric controls for cubic polynomial segments,
describes an evaluationmethod using “quadrangle points” which requires only 3 Lerps, half
the number needed for the Bézier method adapted in Shoemake [Sho85].

---Shoemake [Sho87]

Given the start and end points p and q of a curve segment and the so-called quadrangle points a and b,
Shoemake provides an equation for Squad:

70 https://computerhistory.org/
71 https://chm.secure.nonprofitsoapbox.com/donate
72 https://archive.computerhistory.org/resources/access/text/2023/06/102724883-05-10-acc.pdf
73 https://www.computerhistory.org/collections/catalog/102724883

170

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/rotation/barry-goldman.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/rotation/squad.ipynb
https://computerhistory.org/
https://chm.secure.nonprofitsoapbox.com/donate
https://archive.computerhistory.org/resources/access/text/2023/06/102724883-05-10-acc.pdf
https://www.computerhistory.org/collections/catalog/102724883

The interpretation of this algorithm is simple: p and q form one side of a quadrilateral, a and
b the opposite side; the sides may be non-parallel and non-coplanar. The two inner Lerps
find points on those sides, then the outer Lerp finds a point in between. Essentially, a simple
parabola drawn on a square is subjected to an arbitrary bi-linear warp, which converts it to
a cubic. Transliterated into Slerps, Boehm’s algorithm gives a spherical curve,

Squad(p, a, b, q; α) = Slerp(Slerp(p, q; α), slerp(a, b; α); 2(1− α)α)

---Shoemake [Sho87]

Shoemake also derives equations for the quadrangle points, which involves differentiation of Squad and
assuming tangent vectors similar to uniform Euclidean Catmull–Rom splines (page 67).

Given a series of quaternions qn, use of Squad requires filling in values an and bn on
both sides of the interpolation points, so that each “cubic” segment is traced out by
Squad(qn, an, bn+1, qn+1; α) […] the values for an and bn are given by

an = bn = qn exp

(
−

ln
(
q−1

n qn+1
)
+ ln

(
q−1

n qn−1
)

4

)
---Shoemake [Sho87]

Note

Allegedly, the proof of continuity of tangents by Shoemake [Sho87] is flawed. Kim et al. [KKS96]
and Dam et al. [DKL98] provide new proofs, in case somebody wants to look that up.

The equation for the inner quadrangle points uses relative rotations in the local frame of reference (page 142)
defined by qi. Since we have mainly used rotations in the global frame of reference so far, we can also
rewrite this equation to the equivalent form (changing the index n to i while we are at it)

ai = bi = exp

− ln
(

qi+1q−1
i

)
+ ln

(
qi−1q−1

i

)
4

 qi.

We can try to get some intuition by looking at the Euclidean case. Euclidean quadrangle interpolation is
shown in a separate notebook (page 61) andwe know how to calculate outgoing and incoming quadrangle
points for uniform Euclidean Catmull–Rom splines (page 83):

x̄(+)
i = x̄(−)i = xi −

(xi+1 − xi) + (xi−1 − xi)

4
.

With a bit of squinting, we can see that this is analogous to the quaternion equation shown above.

To show an example, we import splines.quaternion.Squad (page 190) and a few helper functions from
helper.py …

[1]: from splines.quaternion import Squad
from helper import angles2quat, animate_rotations, display_animation

… we define a sequence of rotations …

[2]: rotations = [
angles2quat(0, 0, 0),
angles2quat(90, 0, -45),
angles2quat(-45, 45, -90),
angles2quat(135, -35, 90),
angles2quat(90, 0, 0),

]

171

helper.py

… and create a Squad object:

[3]: sq = Squad(rotations)

For comparison, we use splines.quaternion.CatmullRom (page 190) with the same sequence of rotations:

[4]: from splines.quaternion import CatmullRom

[5]: cr = CatmullRom(rotations, endconditions= closed)

[6]: import numpy as np

[7]: def evaluate(spline, frames=200):
times = np.linspace(

spline.grid[0], spline.grid[-1], frames, endpoint=False)
return spline.evaluate(times)

[8]: ani = animate_rotations({
Squad : evaluate(sq),
Catmull–Rom-like : evaluate(cr),

})
display_animation(ani, default_mode= loop)

Animations can only be shown in HTML output, sorry!

As you can see, the two splines are nearly identical, but not quite:

[9]: max(max(map(abs, q.xyzw)) for q in (evaluate(sq) - evaluate(cr)))

[9]: 0.04640377605179979

Non-Uniform Parameterization

Shoemake [Sho87] uses uniform parameter intervals and doesn’t talk about the non-uniform case at all.
But we can try! In the notebook about non-uniform Euclidean Catmull–Rom splines (page 87) we have seen
the equations for the Euclidean quadrangle points (with ∆i = ti+1 − ti):

x̄(+)
i = xi −

∆i
2(∆i−1 + ∆i)

(
(xi+1 − xi) +

∆i
∆i−1

(xi−1 − xi)

)
x̄(−)i = xi −

∆i−1

2(∆i−1 + ∆i)

(
∆i−1

∆i
(xi+1 − xi) + (xi−1 − xi)

)

This can be “translated” to unit quaternions:

q̄(+)
i = exp

(
− ∆i

2(∆i−1 + ∆i)

(
ln
(

qi+1q−1
i

)
+

∆i
∆i−1

ln
(

qi−1q−1
i

)))
qi

q̄(−)i = exp
(
− ∆i−1

2(∆i−1 + ∆i)

(
∆i−1

∆i
ln
(

qi+1q−1
i

)
+ ln

(
qi−1q−1

i

)))
qi

These two equations are implemented in splines.quaternion.Squad (page 190).

Being able to use non-uniform time values means that we can create a centripetal Squad spline:

172

[10]: sq2 = Squad(rotations, alpha=0.5)

[11]: cr2 = CatmullRom(rotations, alpha=0.5, endconditions= closed)

[12]: ani = animate_rotations({
Squad : evaluate(sq2),
Catmull–Rom-like : evaluate(cr2),

})
display_animation(ani, default_mode= loop)

Animations can only be shown in HTML output, sorry!

The two movements are still very close.

[13]: max(max(map(abs, q.xyzw)) for q in (evaluate(sq2) - evaluate(cr2)))

[13]: 0.05019343803811403

Let’s try some random non-uniform parameter values:

[14]: times = 0, 0.75, 1.6, 2, 3.5, 4

[15]: sq3 = Squad(rotations, times)

[16]: cr3 = CatmullRom(rotations, times, endconditions= closed)

[17]: ani = animate_rotations({
Squad : evaluate(sq3),
Catmull–Rom-like : evaluate(cr3),

})
display_animation(ani, default_mode= loop)

Animations can only be shown in HTML output, sorry!

Now the two movements have some obvious differences.

[18]: max(max(map(abs, q.xyzw)) for q in (evaluate(sq3) - evaluate(cr3)))

[18]: 0.42509139916677563

With more uneven time values, the behavior of the Squad curve becomes more and more erratic. The
reason for this might be the fact that the quadrangle control points are in general much further away
from the curve than the Bézier control points. To check this, let’s show the angle between adjacent
control points in each segment, starting with the Bézier control points of our Catmull–Rom-like spline:

[19]: %precision 1
[[np.degrees(q1.rotation_to(q2).angle) for q1, q2 in zip(s, s[1:])]
for s in cr3.segments]

[19]: [[17.0, 106.3, 19.9],
[22.5, 107.3, 91.0],
[42.8, 83.2, 44.9],
[168.4, 209.5, 68.6],
[22.9, 57.2, 11.3]]

An angle of 180 degree would mean a quarter of a great circle around the unit hypersphere.

Let’s now compare that to the quadrangle control points:

173

[20]: [[np.degrees(q1.rotation_to(q2).angle) for q1, q2 in zip(s, s[1:])]
for s in sq3.segments]

[20]: [[67.6, 206.7, 48.6],
[62.4, 205.0, 108.4],
[24.0, 209.4, 17.9],
[251.1, 259.1, 103.9],
[11.5, 130.6, 30.1]]

The angles are clearly much larger here.

With even more extreme time values, the control quaternions might even “wrap around” the unit hy-
persphere, leading to completely wrong movement between the given sequence of rotations. This will
at some point also happen with the CatmullRom class, but with Squad it will happen much earlier.
. doc/rotation/squad.ipynb ends here.

The following section was generated from doc/rotation/cumulative-form.ipynb .

3.10 Cumulative Form

The basic idea, as proposed by Kim et al. [KKS95] is the following:

Instead of representing a curve as a sumof basis functionsweighted by its control point’s position vectors
pi – as it’s for example done with Bézier splines (page 45) – they suggest to use the relative difference
vectors ∆pi between successive control points.

These relative difference vectors can then be “translated” to local rotations (replacing additions with
multiplications), leading to a form of rotation splines.

Piecewise Slerp

As an example, they define a piecewise linear curve

p(t) = p0 +
n

∑
i=1

αi(t)∆pi,

where

∆pi = pi − pi−1

αi(t) =

0 t < i− 1
t− i + 1 i− 1 ≤ t < i
1 t ≥ i.

[1]: def alpha(i, t):
if t < i - 1:

return 0
elif t >= i:

return 1
else:

return t - i + 1

174

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/rotation/squad.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/rotation/cumulative-form.ipynb

Note

There is an off-by-one error in the paper’s definition of αi(t):

αi(t) =

0 t < i
t− i i ≤ t < i + 1
1 t ≥ i + 1.

This assumes that i starts with 0, but it actually starts with 1.

This “cumulative form” can be “translated” to a rotation spline by replacing additionwithmultiplication
and the relative difference vectors by relative (i.e. local) rotations (represented by unit quaternions):

q(t) = q0

n

∏
i=1

exp(ωiαi(t)),

where

ωi = log
(

q−1
i−1qi

)
.

The paper uses above notation, but this could equivalently be written as

q(t) = q0

n

∏
i=1

(
q−1

i−1qi

)αi(t)
.

[2]: import numpy as np

Let’s import a few helper functions from helper.py:

[3]: from helper import angles2quat, animate_rotations, display_animation

[4]: from splines.quaternion import UnitQuaternion

[5]: # NB: math.prod() since Python 3.8
product = np.multiply.reduce

[6]: def piecewise_slerp(qs, t):
return qs[0] * product([

(qs[i - 1].inverse() * qs[i])**alpha(i, t)
for i in range(1, len(qs))])

[7]: qs = [
angles2quat(0, 0, 0),
angles2quat(90, 0, 0),
angles2quat(90, 90, 0),
angles2quat(90, 90, 90),

]

[8]: times = np.linspace(0, len(qs) - 1, 100)

[9]: ani = animate_rotations([piecewise_slerp(qs, t) for t in times])

175

helper.py

[10]: display_animation(ani, default_mode= reflect)

Animations can only be shown in HTML output, sorry!

Cumulative Bézier/Bernstein Curve

After the piecewise Slerp, Kim, Kim and Shin (1995) show (in section 5.1) how to create a cumulative
form inspired by Bézier splines, i.e. using Bernstein polynomials.

They start with the well-known equation for Bézier splines:

p(t) =
n

∑
i=0

piβi,n(t),

where βi,n(t) are Bernstein basis functions as shown in the notebook about Bézier splines (page 59).

They re-formulate this into a cumulative form:

p(t) = p0 β̃0,n(t) +
n

∑
i=1

∆pi β̃i,n(t),

where the cumulative Bernstein basis functions are given by

β̃i,n(t) =
n

∑
j=i

β j,n(t).

We can get the Bernstein basis polynomials via the function splines.Bernstein.basis() (page 183) …

[11]: from splines import Bernstein

… and create a simple helper function to sum them up:

[12]: from itertools import accumulate

[13]: def cumulative_bases(degree, t):
return list(accumulate(Bernstein.basis(degree, t)[::-1]))[::-1]

Finally, they “translate” this into a rotation spline using quaternions, like before:

q(t) = q0

n

∏
i=1

exp
(
ωi β̃i,n(t)

)
,

where

ωi = log(q−1
i−1qi).

Again, they use above notation in the paper, but this could equivalently be written as

q(t) = q0

n

∏
i=1

(
q−1

i−1qi

)β̃i,n(t)
.

176

[14]: def cumulative_bezier(qs, t):
degree = len(qs) - 1
bases = cumulative_bases(degree, t)
assert np.isclose(bases[0], 1)
return qs[0] * product([

(qs[i - 1].inverse() * qs[i])**bases[i]
for i in range(1, len(qs))

])

[15]: times = np.linspace(0, 1, 100)

[16]: rotations = [cumulative_bezier(qs, t) for t in times]

[17]: ani = animate_rotations(rotations)

[18]: display_animation(ani, default_mode= reflect)

Animations can only be shown in HTML output, sorry!

Comparison with De Casteljau’s Algorithm

This Bézier quaternion curve has a different shape from the Bézier quaternion curve of Shoe-
make [Sho85].

---Kim et al. [KKS95], section 5.1

The method described by Shoemake [Sho85] is shown in a separate notebook (page 150). An implemen-
tation is available in the class splines.quaternion.DeCasteljau (page 189):

[19]: from splines.quaternion import DeCasteljau

[20]: times = np.linspace(0, 1, 100)

[21]: control_polygon = [
angles2quat(90, 0, 0),
angles2quat(0, -45, 90),
angles2quat(0, 0, 0),
angles2quat(180, 0, 180),

]

[22]: cumulative_rotations = [
cumulative_bezier(control_polygon, t)
for t in times

]

[23]: cumulative_rotations_reversed = [
cumulative_bezier(control_polygon[::-1], t)
for t in times

][::-1]

[24]: casteljau_rotations = DeCasteljau([control_polygon]).evaluate(times)

[25]: ani = animate_rotations({
De Casteljau : casteljau_rotations,

(continues on next page)

177

(continued from previous page)

Cumulative : cumulative_rotations,
Cumulative reversed : cumulative_rotations_reversed,

})

[26]: display_animation(ani, default_mode= reflect)

Animations can only be shown in HTML output, sorry!

Applying the same method on the reversed list of control points and then time-reversing the resulting
sequence of rotations leads to an equal (except for rounding errors) sequence of rotations when using
De Casteljau’s algorithm:

[27]: casteljau_rotations_reversed = DeCasteljau([control_polygon[::-1]]).evaluate(times)[::-1]

[28]: for one, two in zip(casteljau_rotations, casteljau_rotations_reversed):
assert np.isclose(one.scalar, two.scalar)
assert np.isclose(one.vector[0], two.vector[0])
assert np.isclose(one.vector[1], two.vector[1])
assert np.isclose(one.vector[2], two.vector[2])

However, doing the same thingwith the “cumulative form” can lead to a significantly different sequence,
as can be seen in the above animation.
. doc/rotation/cumulative-form.ipynb ends here.

The following section was generated from doc/rotation/naive-4d-interpolation.ipynb .

3.11 Naive 4D Quaternion Interpolation

This method for interpolating rotations is normally not recommended. But it might still be interesting
to try it out …

Since quaternions form a vector space (albeit a four-dimensional one), all methods for Euclidean splines
(page 3) can be applied. However, even though rotations can be represented by unit quaternions, which
are a subset of all quaternions, this subset is not a Euclidean space. All unit quaternions form the unit
hypersphere S3 (which is a curved space), and each point on this hypersphere uniquely corresponds to
a rotation.

When we convert our desired rotation “control points” to quaternions and naively interpolate in 4D
quaternion space, the interpolated quaternions are in general not unit quaternions, i.e. they are not part
of the unit hypersphere and they don’t correspond to a rotation. In order to force them onto the unit
hypersphere, we can normalize them, though, which projects them onto the unit hypersphere.

Note that this is a very crude form of interpolation and it might result in unexpected curve shapes.
Especially the temporal behavior might be undesired.

If, for some application, more speed is essential, non-spherical quaternion splines will un-
doubtedly be faster than angle interpolation, while still free of axis bias and gimbal lock.

---Shoemake [Sho85], section 5.4

Abandoning the unit sphere, one could work with the four-dimensional Euclidean space of
arbitrary quaternions. How do standard interpolation methods applied there behave when
mapped back tomatrices? Note thatwe nowhave little guidance in picking the inverse image
for a matrix, and that cusp-free R4 paths do not always project to cusp-free S3 paths.

---Shoemake [Sho85], section 6

[1]: import numpy as np

178

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/rotation/cumulative-form.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/rotation/naive-4d-interpolation.ipynb

[2]: import splines

[3]: from splines.quaternion import Quaternion

As always, we use a few helper functions from helper.py:

[4]: from helper import angles2quat, animate_rotations, display_animation

[5]: rotations = [
angles2quat(0, 0, 0),
angles2quat(0, 0, 45),
angles2quat(90, 90, 0),
angles2quat(180, 0, 90),

]

We use xyzw coordinate order here (because it is more common), but since the 4D coordinates are in-
dependent, we could as well use wxyz order (or any order, for that matter) with identical results (apart
from rounding errors).

However, for illustrating the non-normalized case, we rely on the implicit conversion from xyzw coordi-
nates in the function animate_rotations().

[6]: rotations_xyzw = [q.xyzw for q in rotations]

As an example we use splines.CatmullRom (page 184) here, but any Euclidean spline could be used.

[7]: s = splines.CatmullRom(rotations_xyzw, endconditions= closed)

[8]: times = np.linspace(s.grid[0], s.grid[-1], 100)

[9]: interpolated_xyzw = s.evaluate(times)

[10]: normalized = [
Quaternion(w, (x, y, z)).normalized()
for x, y, z, w in interpolated_xyzw]

For comparison, we also create a splines.quaternion.CatmullRom (page 190) instance:

[11]: spherical_cr = splines.quaternion.CatmullRom(rotations, endconditions= closed)

[12]: ani = animate_rotations({
normalized 4D interp. : normalized,
spherical interp. : spherical_cr.evaluate(times),

})
display_animation(ani, default_mode= loop)

Animations can only be shown in HTML output, sorry!

In case you are wondering what would happen if you forget to normalize the results, let’s also show the
non-normalized data:

[13]: ani = animate_rotations({
normalized : normalized,
not normalized : interpolated_xyzw,

})
display_animation(ani, default_mode= loop)

179

helper.py

Animations can only be shown in HTML output, sorry!

Obviously, the non-normalized values are not pure rotations.

To get a different temporal behavior, let’s try using centripetal parameterization (page 73). Note that this
guarantees the absence of cusps and self-intersections in the 4D curve, but this guarantee doesn’t extend
to the projection onto the unit hypersphere.

[14]: s2 = splines.CatmullRom(rotations_xyzw, alpha=0.5, endconditions= closed)

[15]: times2 = np.linspace(s2.grid[0], s2.grid[-1], len(times))

[16]: normalized2 = [
Quaternion(w, (x, y, z)).normalized()
for x, y, z, w in s2.evaluate(times2)]

[17]: ani = animate_rotations({
uniform : normalized,
centripetal : normalized2,

})
display_animation(ani, default_mode= loop)

Animations can only be shown in HTML output, sorry!

Let’s also try arc-length parameterization with the UnitSpeedAdapter (page 185):

[18]: s3 = splines.UnitSpeedAdapter(s2)
times3 = np.linspace(s3.grid[0], s3.grid[-1], len(times))

[19]: normalized3 = [
Quaternion(w, (x, y, z)).normalized()
for x, y, z, w in s3.evaluate(times3)]

The arc-length parameterized spline has a constant speed in 4D quaternion space, but that doesn’t mean
it has a constant angular speed!

For comparison, we also create a rotation spline with constant angular speed:

[20]: s4 = splines.UnitSpeedAdapter(
splines.quaternion.CatmullRom(

rotations, alpha=0.5, endconditions= closed))
times4 = np.linspace(s4.grid[0], s4.grid[-1], len(times))

[21]: ani = animate_rotations({
const. 4D speed : normalized3,
const. angular speed : s4.evaluate(times4),

})
display_animation(ani, default_mode= loop)

Animations can only be shown in HTML output, sorry!

The difference is subtle, but it is definitely visible. More extreme examples can certainly be found.
. doc/rotation/naive-4d-interpolation.ipynb ends here.

The following section was generated from doc/rotation/naive-euler-angles-interpolation.ipynb .

3.12 Naive Interpolation of Euler Angles

This method for interpolating 3D rotations is not recommended at all!

180

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/rotation/naive-4d-interpolation.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/rotation/naive-euler-angles-interpolation.ipynb

Since 3D rotations can be represented by a list of three angles, it might be tempting to simply interpolate
those angles independently.

Let’s try it and see what happens, shall we?

[1]: import numpy as np

[2]: import splines

As always, we use a few helper functions from helper.py:

[3]: from helper import angles2quat, animate_rotations, display_animation

We are using splines.CatmullRom (page 184) to interpolate the Euler angles independently and
splines.quaternion.CatmullRom (page 190) to interpolate the associated quaternions for comparison:

[4]: def plot_interpolated_angles(angles):
s1 = splines.CatmullRom(angles, endconditions= closed)
times = np.linspace(s1.grid[0], s1.grid[-1], 100)
s2 = splines.quaternion.CatmullRom(

[angles2quat(azi, ele, roll) for azi, ele, roll in angles],
endconditions= closed)

ani = animate_rotations({
Euler angles : [angles2quat(*abc) for abc in s1.evaluate(times)],
quaternions : s2.evaluate(times),

})
display_animation(ani, default_mode= loop)

[5]: plot_interpolated_angles([
(0, 0, 0),
(45, 0, 0),
(90, 45, 0),
(90, 90, 0),
(180, 0, 90),

])

Animations can only be shown in HTML output, sorry!

There is clearly a difference between the two, but the Euler angles don’t look that bad.

Let’s try another example:

[6]: plot_interpolated_angles([
(-175, 0, 0),
(175, 0, 0),

])

Animations can only be shown in HTML output, sorry!

Here we see that the naive interpolation isn’t aware that the azimuth angle is supposed to wrap around
at 180 degrees.

This could be fixed with a less naive implementation, but there are also unfixable problems, as this
example shows:

[7]: plot_interpolated_angles([
(45, 45, 0),
(45, 90, 0),
(-135, 45, 180),

])

181

helper.py

Animations can only be shown in HTML output, sorry!

Even though all involved rotations are supposed to happen around a single rotation axis, The Euler
angles interpolation is all over the place.
. doc/rotation/naive-euler-angles-interpolation.ipynb ends here.

4 Python Module

splines (page 182) Piecewise polynomial curves (in Euclidean
space).

splines.quaternion (page 186) Quaternions and unit-quaternion splines.

4.1 splines

Piecewise polynomial curves (in Euclidean space).

Submodules

quaternion (page 186) Quaternions and unit-quaternion splines.

Classes

Bernstein (page 183) Piecewise Bézier curve using Bernstein basis.
CatmullRom (page 184) Catmull--Rom spline.
CubicHermite (page 183) Cubic Hermite curve.
KochanekBartels (page 184) Kochanek--Bartels spline.
Monomial (page 182) Piecewise polynomial curve using monomial

basis.
MonotoneCubic (page 185) Monotone cubic curve.
Natural (page 184) Natural spline.
NewGridAdapter (page 186) Re-parameterize a spline with new grid values.
PiecewiseMonotoneCubic (page 185) Piecewise monotone cubic curve.
UnitSpeedAdapter (page 185) Re-parameterize a spline to have a constant

speed of 1.

class splines.Monomial(segments, grid=None)
Bases: object74

Piecewise polynomial curve using monomial basis.

See Parametric Polynomial Curves (page 3).

Coefficients can have an arbitrary number of dimensions. An arbitrary polynomial degree d can
be used by specifying d + 1 coefficients per segment. The i-th segment is evaluated using

pi(t) =
d

∑
k=0

ai,k

(
t− ti

ti+1 − ti

)k
for ti ≤ t < ti+1.

This is similar to scipy.interpolate.PPoly75, which states:

182

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.3.1/doc/rotation/naive-euler-angles-interpolation.ipynb
https://docs.python.org/3/library/functions.html#object
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PPoly.html#scipy.interpolate.PPoly

High-order polynomials in the power basis can be numerically unstable. Precision prob-
lems can start to appear for orders larger than 20-30.

This shouldn’t be a problem, sincemost commonly splines of degree 3 (i.e. cubic splines) are used.

Parameters

• segments – Sequence of polynomial segments. Each segment ai contains coef-
ficients for the monomial basis (in order of decreasing degree). Different seg-
ments can have different polynomial degrees.

• grid (optional) – Sequence of parameter values ti corresponding to segment
boundaries. Must be strictly increasing. If not specified, a uniform grid is used
(0, 1, 2, 3, …).

evaluate(t, n=0)
Get value (or n-th derivative) at given parameter value(s) t.

class splines.Bernstein(segments, grid=None)
Bases: object76

Piecewise Bézier curve using Bernstein basis.

See Bézier Splines (page 45).

Parameters

• segments – Sequence of segments, each one consisting ofmultiple Bézier control
points. Different segments can have different numbers of control points (and
therefore different polynomial degrees).

• grid (optional) – Sequence of parameter values corresponding to segment
boundaries. Must be strictly increasing. If not specified, a uniform grid is used
(0, 1, 2, 3, …).

static basis(degree, t)
Bernstein basis polynomials of given degree, evaluated at t.

Returns a list of values corresponding to i = 0, . . . , n, given the degree n, using

bi,n(t) =
(

n
i

)
ti (1− t)n−i ,

with the binomial coefficient (n
i) =

n!
i!(n−i)! .

evaluate(t, n=0)
Get value at the given parameter value(s) t.

Only n=0 is currently supported.

class splines.CubicHermite(vertices, tangents, grid=None)
Bases: Monomial (page 182)

Cubic Hermite curve.

See Hermite Splines (page 18).

Parameters

• vertices – Sequence of vertices.
74 https://docs.python.org/3/library/functions.html object
75 https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PPoly.html scipy.interpolate.

PPoly
76 https://docs.python.org/3/library/functions.html object

183

https://docs.python.org/3/library/functions.html#object

• tangents – Sequence of tangent vectors (two per segment: outgoing and incom-
ing).

• grid (optional) – Sequence of parameter values. Must be strictly increasing. If
not specified, a uniform grid is used (0, 1, 2, 3, …).

matrix = array([[2, -2, 1, 1], [-3, 3, -2, -1], [0, 0, 1, 0], [1, 0, 0, 0]])

class splines.CatmullRom(vertices, grid=None, *, alpha=None, endconditions='natural')
Bases: CubicHermite (page 183)

Catmull–Rom spline.

This class implements one specific member of the family of splines described by Catmull and Rom
[CR74], which is commonly known asCatmull–Rom spline: The cubic spline that can be constructed
by linear Lagrange interpolation (and extrapolation) followed by quadratic B-spline blending, or
equivalently, quadratic Lagrange interpolation followed by linear B-spline blending.

The implementation used in this class, however, does nothing of that sort. It simply calculates
the appropriate tangent vectors at the control points and instantiates a CubicHermite (page 183)
spline.

See Catmull--Rom Splines (page 65).

Parameters

• vertices – Sequence of vertices.

• grid (optional) – Sequence of parameter values. Must be strictly increasing. If
not specified, a uniform grid is used (0, 1, 2, 3, …).

• alpha (optional) – See Parameterized Parameterization (page 73).

• endconditions (optional) – Start/end conditions. Can be closed ,
natural or a pair of tangent vectors (a.k.a. “clamped”). If closed , the first

vertex is re-used as last vertex and an additional grid value has to be specified.

class splines.KochanekBartels(vertices, grid=None, *, tcb=(0, 0, 0), alpha=None,
endconditions='natural')

Bases: CubicHermite (page 183)

Kochanek–Bartels spline.

See Kochanek--Bartels Splines (page 98).

Parameters

• vertices – Sequence of vertices.

• grid (optional) – Sequence of parameter values. Must be strictly increasing. If
not specified, a uniform grid is used (0, 1, 2, 3, …).

• tcb (optional) – Sequence of tension, continuity and bias triples. TCB values can
only be given for the interior vertices.

• alpha (optional) – See Parameterized Parameterization (page 73).

• endconditions (optional) – Start/end conditions. Can be closed ,
natural or a pair of tangent vectors (a.k.a. “clamped”). If closed , the first

vertex is re-used as last vertex and an additional grid value has to be specified.

class splines.Natural(vertices, grid=None, *, alpha=None, endconditions='natural')
Bases: CubicHermite (page 183)

Natural spline.

See Natural Splines (page 36).

184

Parameters

• vertices – Sequence of vertices.

• grid (optional) – Sequence of parameter values. Must be strictly increasing. If
not specified, a uniform grid is used (0, 1, 2, 3, …).

• alpha (optional) – See Parameterized Parameterization (page 73).

• endconditions (optional) – Start/end conditions. Can be closed ,
natural or a pair of tangent vectors (a.k.a. “clamped”). If closed , the first

vertex is re-used as last vertex and an additional grid value has to be specified.

class splines.PiecewiseMonotoneCubic(values, grid=None, slopes=None, *, alpha=None,
closed=False)

Bases: CatmullRom (page 184)

Piecewise monotone cubic curve.

See Piecewise Monotone Interpolation (page 120).

This only works for one-dimensional values.

For undefined slopes, _calculate_tangent() is called on the base class.

Parameters

• values – Sequence of values to be interpolated.

• grid (optional) – Sequence of parameter values. Must be strictly increasing. If
not specified, a uniform grid is used (0, 1, 2, 3, …).

• slopes (optional) – Sequence of slopes or None if slope should be com-
puted from neighboring values. An error is raised if a segment would become
non-monotone with a given slope.

class splines.MonotoneCubic(values, grid=None, slopes=None, *, alpha=None, cyclic=False, **kwargs)
Bases: PiecewiseMonotoneCubic (page 185)

Monotone cubic curve.

This takes the same arguments as PiecewiseMonotoneCubic (page 185) (except closed is replaced
by cyclic), but it raises an error if the given values are not montone.

See Monotone Interpolation (page 128).

get_time(value)
Get the time instance for the given value.

If the solution is not unique (i.e. if there is a plateau), None is returned.

class splines.UnitSpeedAdapter(curve)
Bases: object77

Re-parameterize a spline to have a constant speed of 1.

For splines in Euclidean space this amounts to Arc-Length Parameterization (page 135).

However, this class is implemented in a way that also allows using rotation splines, which will be
re-parameterized to have a Constant Angular Speed (page 152) of 1. For this to work, the second
derivative of curve must yield an angular velocity vector. See splines.quaternion.DeCasteljau
(page 189) for an example of a compatible rotation spline.

The parameter s represents the cumulative arc-length or the cumulative rotation angle, respec-
tively.

185

https://docs.python.org/3/library/functions.html#object

evaluate(s)
Get value at the given parameter value(s) s.

class splines.NewGridAdapter(curve, new_grid=1, cyclic=False)
Bases: object78

Re-parameterize a spline with new grid values.

This can be used for both Euclidean splines and rotation splines.

Parameters

• curve – A spline.

• new_grid (optional) – If a single number is given, the newparameterwill range
from 0 to that number. Otherwise, a sequence of numbers has to be given, one
for each grid value. Instead of a value, None can be specified to choose a value
automatically. The first and last value cannot be None.

• cyclic (optional) – If True, the slope of the re-parameterization function (but
not necessarily the speed of the final spline!) will be the same at the beginning
and end of the spline.

evaluate(u)
Get value at the given parameter value(s) u.

4.2 splines.quaternion

Quaternions and unit-quaternion splines.

Functions

canonicalized (page 189) Iterator adapter to ensure minimal angles be-
tween quaternions.

slerp (page 188) Spherical Linear intERPolation.

Classes

BarryGoldman (page 190) Rotation spline using the Barry--Goldman algo-
rithm with slerp() (page 188).

CatmullRom (page 190) Catmull--Rom-like rotation spline.
DeCasteljau (page 189) Rotation spline using De Casteljau's algorithm

with slerp() (page 188).
KochanekBartels (page 189) Kochanek--Bartels-like rotation spline.
PiecewiseSlerp (page 189) Piecewise Slerp.
Quaternion (page 186) A very simple quaternion class.
Squad (page 190) Spherical Quadrangle Interpolation.
UnitQuaternion (page 187) Unit quaternion.

77 https://docs.python.org/3/library/functions.html object
78 https://docs.python.org/3/library/functions.html object

186

https://docs.python.org/3/library/functions.html#object

class splines.quaternion.Quaternion(scalar, vector)
Bases: object79

A very simple quaternion class.

This is the base class for the more relevant class UnitQuaternion (page 187).

See the notebook about quaternions (page 138).

property scalar

The scalar part (a.k.a. real part) of the quaternion.

property vector

The vector part (a.k.a. imaginary part) of the quaternion.

conjugate()

Return quaternion with same scalar (page 187) part, negated vector (page 187) part.

normalized()

Return quaternion with same 4D direction but unit norm (page 187).

dot(other)
Dot product of two quaternions.

This is the four-dimensional dot product, yielding a scalar result. This operation is commu-
tative.

Note that this is different from the quaternion multiplication (q1 * q2), which produces
another quaternion (and is noncommutative).

property norm

Length of the quaternion in 4D space.

property xyzw

Components of the quaternion, scalar (page 187) last.

property wxyz

Components of the quaternion, scalar (page 187) first.

class splines.quaternion.UnitQuaternion

Bases: Quaternion (page 186)

Unit quaternion.

See the section about unit quaternions (page 139).

classmethod from_axis_angle(axis, angle)
Create a unit quaternion from a rotation axis (page 188) and angle (page 188).

Parameters

• axis – Three-component rotation axis. This will be normalized.

• angle – Rotation angle in radians.

classmethod from_unit_xyzw(xyzw)
Create a unit quaternion from another unit quaternion.

Parameters
xyzw – Components of a unit quaternion (scalar last). This will not be normal-
ized, it must already have unit length.

79 https://docs.python.org/3/library/functions.html object

187

https://docs.python.org/3/library/functions.html#object

inverse()

Multiplicative inverse.

For unit quaternions, this is the same as conjugate() (page 187).

classmethod exp_map(value)
Exponential map from R3 to unit quaternions.

The exponential map operation transforms a three-dimensional vector that’s a member of the
tangent space at the identity quaternion into a unit quaternion.

This is the inverse operation to log_map() (page 188).

Parameters
value (3-tuple) – Element of the tangent space at the quaternion identity.

log_map()

Logarithmic map from unit quaternions to R3.

The logarithmic map operation transforms a unit quaternion into a three-dimensional vector
that’s a member of the tangent space at the identity quaternion.

This is the inverse operation to exp_map() (page 188).

Returns
Corresponding three-element vector in the tangent space at the quaternion iden-
tity.

property axis

The (normalized) rotation axis.

property angle

The rotation angle in radians.

rotation_to(other)
Rotation required to rotate self into other.

See Relative Rotation (Global Frame of Reference) (page 142).

Parameters
other (UnitQuaternion) – Target rotation.

Returns
Relative rotation – as UnitQuaternion.

rotate_vector(v)
Apply rotation to a 3D vector.

Parameters
v (3-tuple) – A vector in R3.

Returns
The rotated vector.

splines.quaternion.slerp(one, two, t)
Spherical Linear intERPolation.

See Spherical Linear Interpolation (Slerp) (page 144).

Parameters

• one (UnitQuaternion) – Start rotation.

• two (UnitQuaternion) – End rotation.

188

• t – Parameter value(s) between 0 and 1.

splines.quaternion.canonicalized(quaternions)
Iterator adapter to ensure minimal angles between quaternions.

See Canonicalization (page 144).

class splines.quaternion.PiecewiseSlerp(quaternions, *, grid=None, closed=False)
Bases: object80

Piecewise Slerp.

See Piecewise Slerp (page 147).

Parameters

• quaternions – Sequence of rotations to be interpolated. The quaternions will
be canonicalized() (page 189).

• grid (optional) – Sequence of parameter values. Must be strictly increasing.
Must have the same length as quaternions, except when closed is True, where it
must be one element longer. If not specified, a uniform grid is used (0, 1, 2, 3,
…).

• closed (optional) – If True, the first quaternion is repeated at the end.

evaluate(t, n=0)
Get value at the given parameter value(s) t.

Only n=0 is currently supported.

class splines.quaternion.DeCasteljau(segments, grid=None)
Bases: object81

Rotation spline using De Casteljau’s algorithm with slerp() (page 188).

See the corresponding notebook (page 150) for details.

Parameters

• segments – Sequence of segments, each one consisting of multiple control
quaternions. Different segments can have different numbers of control points.

• grid (optional) – Sequence of parameter values corresponding to segment
boundaries. Must be strictly increasing. If not specified, a uniform grid is used
(0, 1, 2, 3, …).

evaluate(t, n=0)
Get value or angular velocity at given parameter value(s).

Parameters

• t – Parameter value(s).

• n ({0, 1}, optional) – Use 0 for calculating the value (a quaternion), 1 for
the angular velocity (a three-element vector).

class splines.quaternion.KochanekBartels(quaternions, grid=None, *, tcb=(0, 0, 0), alpha=None,
endconditions='natural')

Bases: DeCasteljau (page 189)

Kochanek–Bartels-like rotation spline.

See the corresponding notebook (page 162) for details.
80 https://docs.python.org/3/library/functions.html object
81 https://docs.python.org/3/library/functions.html object

189

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

Parameters

• quaternions – Sequence of rotations to be interpolated. The quaternions will
be canonicalized() (page 189).

• grid (optional) – Sequence of parameter values. Must be strictly increasing. If
not specified, a uniform grid is used (0, 1, 2, 3, …).

• tcb (optional) – Sequence of tension, continuity and bias triples. TCB values can
only be given for the interior quaternions. If only twoquaternions are given, TCB
values are ignored.

• alpha (optional) – See Parameterized Parameterization (page 73).

• endconditions (optional) – Start/end conditions. Can be closed or
natural . If closed , the first rotation is re-used as last rotation and an addi-

tional grid value has to be specified.

class splines.quaternion.CatmullRom(quaternions, grid=None, *, alpha=None,
endconditions='natural')

Bases: KochanekBartels (page 189)

Catmull–Rom-like rotation spline.

This is just KochanekBartels (page 189) without TCB values.

See Uniform Catmull--Rom-Like Quaternion Splines (page 153) and Non-Uniform Catmull--Rom-Like
Rotation Splines (page 159).

class splines.quaternion.BarryGoldman(quaternions, grid=None, *, alpha=None)
Bases: object82

Rotation spline using the Barry–Goldman algorithm with slerp() (page 188).

Always closed (for now).

See Barry--Goldman Algorithm With Slerp (page 167).

evaluate(t)
Get value at the given parameter value(s) t.

class splines.quaternion.Squad(quaternions, grid=None, *, alpha=None)
Bases: object83

Spherical Quadrangle Interpolation.

Always closed (for now).

See Spherical Quadrangle Interpolation (Squad) (page 170).

evaluate(t)
Get value at the given parameter value(s) t.

82 https://docs.python.org/3/library/functions.html object
83 https://docs.python.org/3/library/functions.html object

190

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

5 References

[BG88] Phillip J. Barry and Ronald N. Goldman. A recursive evaluation algorithm for a class of Cat-
mull–Rom splines. In 15th Annual Conference on Computer Graphics and Interactive Techniques, ACM
SIGGRAPH, 199–204. 1988. doi:10.1145/54852.37851184.

[Boe82] Wolfgang Boehm. On cubics: A survey. Computer Graphics and Image Processing, 19(3):201–226,
1982. doi:10.1016/0146-664X(82)90009-085.

[CR74] Edwin Catmull and Raphael Rom. A class of local interpolating splines. In Robert E. Barnhill
and Richard F. Riesenfeld, editors, Computer Aided Geometric Design, pages 317–326. Academic
Press, 1974. doi:10.1016/B978-0-12-079050-0.50020-586.

[DKL98] Erik B. Dam, Martin Koch, and Martin Lillholm. Quaternions, interpolation and animation.
Technical Report DIKU-TR-98/5, Department of Computer Science, University of Copenhagen,
1998.

[dB72] Carl de Boor. On calculating with B-splines. Journal of Approximation Theory, 6(1):50–62, 1972.
doi:10.1016/0021-9045(72)90080-987.

[dB78] Carl de Boor. A Practical Guide to Splines. Springer, 1978. ISBN 978-0-387-95366-3.

[DEH89] Randall L. Dougherty, Alan S. Edelman, and James M. Hyman. Nonnegativity‑, monotonic-
ity‑, or convexity-preserving cubic and quintic Hermite interpolation. Mathematics of Computa-
tion, 52(186):471–494, 1989. doi:10.1090/S0025-5718-1989-0962209-188.

[Far12] Rida T. Farouki. The Bernstein polynomial basis: A centennial retrospective. Computer Aided
Geometric Design, 29(6):379–419, 2012. doi:10.1016/j.cagd.2012.03.00189.

[Fri82] Frederick N. Fritsch. Piecewise cubic Hermite interpolation package (final specifica-
tions). Technical Report UCID-30194, Lawrence Livermore National Laboratory, USA, 1982.
doi:10.2172/683840690.

[FB84] Frederick N. Fritsch and Judy Butland. A method for constructing local monotone piece-
wise cubic interpolants. SIAM Journal on Scientific and Statistical Computing, 5(2):300–304, 1984.
doi:10.1137/090502191.

[FC80] Frederick N. Fritsch and Ralph E. Carlson. Monotone piecewise cubic interpolation. SIAM Jour-
nal on Numerical Analysis, 17(2):238–246, 1980. doi:10.1137/071702192.

[GR74] William J. Gordon and Richard F. Riesenfeld. B-spline curves and surfaces.
In Computer Aided Geometric Design, pages 95–126. Academic Press, 1974.
doi:10.1016/B978-0-12-079050-0.50011-493.

[KKS95] Myoung-Jun Kim, Myung-Soo Kim, and Sung Yong Shin. A general construction scheme for
unit quaternion curves with simple high order derivatives. In SIGGRAPH: Computer graphics and
interactive techniques, 369–376. 1995. doi:10.1145/218380.21848694.

[KKS96] Myoung-Jun Kim, Myung-Soo Kim, and Sung Yong Shin. A compact differential formula for
the first derivative of a unit quaternion curve. The Journal of Visualization and Computer Animation,
7(1):43–57, 1996. doi:10.1002/(SICI)1099-1778(199601)7:1<43::AID-VIS136>3.0.CO;2-T95.

84 https://doi.org/10.1145/54852.378511
85 https://doi.org/10.1016/0146-664X(82)90009-0
86 https://doi.org/10.1016/B978-0-12-079050-0.50020-5
87 https://doi.org/10.1016/0021-9045(72)90080-9
88 https://doi.org/10.1090/S0025-5718-1989-0962209-1
89 https://doi.org/10.1016/j.cagd.2012.03.001
90 https://doi.org/10.2172/6838406
91 https://doi.org/10.1137/0905021
92 https://doi.org/10.1137/0717021
93 https://doi.org/10.1016/B978-0-12-079050-0.50011-4
94 https://doi.org/10.1145/218380.218486
95 https://doi.org/10.1002/(SICI)1099-1778(199601)7:1<43::AID-VIS136>3.0.CO;2-T

191

https://doi.org/10.1145/54852.378511
https://doi.org/10.1016/0146-664X(82)90009-0
https://doi.org/10.1016/B978-0-12-079050-0.50020-5
https://doi.org/10.1016/0021-9045(72)90080-9
https://doi.org/10.1090/S0025-5718-1989-0962209-1
https://doi.org/10.1016/j.cagd.2012.03.001
https://doi.org/10.2172/6838406
https://doi.org/10.1137/0905021
https://doi.org/10.1137/0717021
https://doi.org/10.1016/B978-0-12-079050-0.50011-4
https://doi.org/10.1145/218380.218486
https://doi.org/10.1002/(SICI)1099-1778(199601)7:1<43::AID-VIS136>3.0.CO;2-T

[KB84] Doris H. U. Kochanek and Richard H. Bartels. Interpolating splines with local tension, conti-
nuity, and bias control. In 11th Annual Conference on Computer Graphics and Interactive Techniques,
ACM SIGGRAPH, 33–41. 1984. doi:10.1145/800031.80857596.

[Lee89] E. T. Y. Lee. Choosing nodes in parametric curve interpolation. Computer-Aided Design,
21(6):363–370, 1989. doi:10.1016/0010-4485(89)90003-197.

[McD10] John McDonald. Teaching quaternions is not complex. Computer Graphics Forum,
29(8):2447–2455, 2010. doi:10.1111/j.1467-8659.2010.01756.x98.

[Mil09] Ian Millington. Matrices and conversions for uniform parametric curves. 2009. URL: https:
//web.archive.org/web/20160305083440/http://therndguy.com.

[Mol04] Cleve B. Moler. Numerical Computing with MATLAB. Society for Industrial and Applied Math-
ematics, 2004. ISBN 978-0-89871-660-3.

[Ove68] Albert W. Overhauser. Analytic definition of curves and surfaces by parabolic blending. Tech-
nical Report SL 68-40, Scientific Laboratory, Ford Motor Company, Dearborn, Michigan, 1968.

[Sch46] Isaac Jacob Schoenberg. Contributions to the problem of approximation of equidistant
data by analytic functions. Part A.–On the problem of smoothing or graduation. A first
class of analytic approximation formulae. Quarterly of Applied Mathematics, 4(1):45–99, 1946.
doi:10.1090/qam/1591499.

[Sho85] Ken Shoemake. Animating rotation with quaternion curves. SIGGRAPH Computer Graphics,
19(3):245–254, 1985. doi:10.1145/325165.325242100.

[Sho87] Ken Shoemake. Quaternion calculus and fast animation. In Computer Animation: 3D Motion
Specification and Control, number 10 in ACM SIGGRAPH course notes, pages 101–121. 1987.

[YSK11] Cem Yuksel, Scott Schaefer, and John Keyser. Parameterization and applications of Cat-
mull–Rom curves. Computer-Aided Design, 43(7):747–755, 2011. doi:10.1016/j.cad.2010.08.008101.

96 https://doi.org/10.1145/800031.808575
97 https://doi.org/10.1016/0010-4485(89)90003-1
98 https://doi.org/10.1111/j.1467-8659.2010.01756.x
99 https://doi.org/10.1090/qam/15914

100 https://doi.org/10.1145/325165.325242
101 https://doi.org/10.1016/j.cad.2010.08.008

192

https://doi.org/10.1145/800031.808575
https://doi.org/10.1016/0010-4485(89)90003-1
https://doi.org/10.1111/j.1467-8659.2010.01756.x
https://web.archive.org/web/20160305083440/http://therndguy.com
https://web.archive.org/web/20160305083440/http://therndguy.com
https://doi.org/10.1090/qam/15914
https://doi.org/10.1145/325165.325242
https://doi.org/10.1016/j.cad.2010.08.008

	Introduction
	Polynomial Curves in Euclidean Space
	Parametric Polynomial Curves
	Lagrange Interpolation
	One-dimensional Example
	Neville’s Algorithm
	Two-Dimensional Example
	Runge’s Phenomenon

	Splines
	Definition
	Properties
	Types

	Hermite Splines
	Properties of Hermite Splines
	Uniform Cubic Hermite Splines
	Basis Matrix
	Basis Polynomials
	Example Plot
	Relation to Bézier Splines

	Non-Uniform Cubic Hermite Splines
	Basis Matrix
	Basis Polynomials
	Example Plot
	Utilizing the Uniform Basis Matrix

	Natural Splines
	Properties of Natural Splines
	Uniform Natural Splines
	End Conditions
	Natural
	Clamped
	Closed

	Solving the System of Equations

	Non-Uniform Natural Splines
	End Conditions

	Bézier Splines
	Properties of Bézier Splines
	De Casteljau’s Algorithm
	Preparations
	Degree 1 (Linear)
	Degree 2 (Quadratic)
	Quadratic Tangent Vectors

	Degree 3 (Cubic)
	Cubic Tangent Vectors
	Cubic Bézier to Hermite Segments

	Degree 4 (Quartic)
	Quartic Tangent Vectors

	Arbitrary Degree

	Non-Uniform (Cubic) Bézier Splines
	Tangent Vectors
	Control Points From Tangent Vectors

	Quadrangle Interpolation
	Basis Polynomials
	Basis Matrix
	Tangent Vectors
	Quadrangle to Hermite Control Values
	Quadrangle to Bézier Control Points
	Non-Uniform Parameterization

	Catmull–Rom Splines
	Properties of Catmull–Rom Splines
	Tangent Vectors
	Wrong Tangent Vectors
	Cusps and Self-Intersections
	Chordal Parameterization
	Centripetal Parameterization
	Parameterized Parameterization

	Uniform Catmull–Rom Splines
	Blending Functions
	Cardinal Functions
	Example Plot
	Basis Polynomials
	Basis Matrix
	Tangent Vectors
	Using Bézier Segments
	Using Quadrangle Interpolation

	Non-Uniform Catmull–Rom Splines
	Tangent Vectors
	Using Non-Uniform Bézier Segments
	Using Non-Uniform Quadrangle Interpolation
	Animation

	Barry–Goldman Algorithm
	Triangular Schemes
	Neville’s Algorithm
	De Boor’s Algorithm
	Combining Both Algorithms
	Step by Step
	First Stage
	Second Stage
	Third Stage

	Tangent Vectors
	Animation

	Kochanek–Bartels Splines
	Properties of Kochanek–Bartels Splines
	Tension
	Continuity
	Bias
	Combinations

	Uniform Kochanek–Bartels Splines
	Parameters
	Tension
	Continuity
	Bias
	All Three Combined

	Calculation
	Basis Matrix
	Basis Polynomials

	Non-Uniform Kochanek–Bartels Splines

	End Conditions
	Natural End Conditions
	Begin
	End
	Example
	Bézier Control Points

	Piecewise Monotone Interpolation
	Examples
	Providing Slopes

	Generating and Modifying the Slopes at Segment Boundaries
	PCHIP/PCHIM
	More Examples
	Monotone Interpolation
	End Conditions
	Even More Examples

	Re-Parameterization
	Arc-Length Parameterization
	Spline-Based Re-Parameterization

	Rotation Splines
	Quaternions
	Quaternion Representations
	Unit Quaternions
	Unit Quaternions as Rotations
	Axes Conventions
	Quaternion Multiplication
	Inverse
	Relative Rotation (Global Frame of Reference)
	Relative Rotation (Local Frame of Reference)
	Exponentiation
	Negation
	Canonicalization

	Spherical Linear Interpolation (Slerp)
	Derivation
	Visualization
	Piecewise Slerp
	Slerp vs. Nlerp

	De Casteljau’s Algorithm With Slerp
	“Cubic”
	Arbitrary “Degree”
	Constant Angular Speed
	Joining Curves

	Uniform Catmull–Rom-Like Quaternion Splines
	Relative Rotations
	Tangent Space
	Example
	Shoemake’s Approach

	Non-Uniform Catmull–Rom-Like Rotation Splines
	Parameterization

	Kochanek–Bartels-like Rotation Splines
	Examples

	“Natural” End Conditions
	Examples

	Barry–Goldman Algorithm With Slerp
	Constant Angular Speed

	Spherical Quadrangle Interpolation (Squad)
	Non-Uniform Parameterization

	Cumulative Form
	Piecewise Slerp
	Cumulative Bézier/Bernstein Curve
	Comparison with De Casteljau’s Algorithm

	Naive 4D Quaternion Interpolation
	Naive Interpolation of Euler Angles

	Python Module
	splines
	splines.quaternion

	References

