
Splines in Euclidean Space and Beyond
Release 0.2.0

Matthias Geier

2022-03-04

Contents

1 Polynomial Curves in Euclidean Space 2
1.1 Polynomial Parametric Curves . 2

1.2 Lagrange Interpolation . 5

1.3 Hermite Splines . 13

1.4 Natural Splines . 29

1.5 Bézier Splines . 39

1.6 Catmull–Rom Splines . 55

1.7 Kochanek–Bartels Splines . 84

1.8 End Conditions . 101

1.9 Piecewise Monotone Interpolation . 107

2 Rotation Splines 119
2.1 Quaternions . 119

2.2 Spherical Linear Interpolation (Slerp) . 125

2.3 De Casteljau’s Algorithm With Slerp . 130

2.4 Uniform Catmull–Rom-Like Quaternion Splines . 133

2.5 Non-Uniform Catmull–Rom-Like Rotation Splines . 139

2.6 Kochanek–Bartels-like Rotation Splines . 142

2.7 “Natural” End Conditions . 146

2.8 Barry–Goldman Algorithm With Slerp . 147

2.9 Cumulative Form . 151

2.10 Naive 4D Quaternion Interpolation . 155

2.11 Naive Interpolation of Euler Angles . 157

3 Python Module 159
3.1 splines . 159

3.2 splines.quaternion . 163

4 References 167

References 167

. . . with focus on univariate, non-uniform piecewise cubic polynomial curves in one, two and three
spatial dimensions, as well as rotation splines.

• Installation:
python3 -m pip install splines

1

• Online documentation:
https://splines.readthedocs.io/

• Documentation notebooks on Binder:
https://mybinder.org/v2/gh/AudioSceneDescriptionFormat/splines/master?filepath=doc/
index.ipynb

• Source code repository (and issue tracker):
https://github.com/AudioSceneDescriptionFormat/splines

• License:
MIT – see the file LICENSE for details.

1 Polynomial Curves in Euclidean Space

The following section was generated from doc/euclidean/polynomials.ipynb .

1.1 Polynomial Parametric Curves

The building blocks for polynomial splines (page 2) are of course polynomials1.

[1]: import sympy as sp
sp.init_printing(order='grevlex')

We are mostly interested in univariate splines, i.e. curves with one free parameter, which are built using
polynomials with a single parameter.

Here we are calling this parameter t. You can think about it as time (e.g. in seconds), but it doesn’t
have to represent time.

[2]: t = sp.symbols('t')

Polynomials typically consist of multiple terms. Each term contains a basis function, which itself con-
tains one or more integer powers of t. The highest power of all terms is called the degree of the
polynomial.

The arguably simplest set of basis functions is the monomial basis, which simply consists of all powers
of t up to the given degree:

[3]: b_monomial = sp.Matrix([t**3, t**2, t, 1]).T
b_monomial

[3]:
[
t3 t2 t 1

]
In this example we are using polynomials of degree 3, which are also called cubic polynomials.

These basis functions are multiplied by (constant) coefficients. We are writing the coefficients with bold
symbols, because apart from simple scalars (for one-dimensional functions), these symbols can also
represent vectors in two- or three-dimensional space.

[4]: coefficients = sp.Matrix(sp.symbols('a:dbm')[::-1])
coefficients

1 https://en.wikipedia.org/wiki/Polynomial

2

https://splines.readthedocs.io/
https://mybinder.org/v2/gh/AudioSceneDescriptionFormat/splines/master?filepath=doc/index.ipynb
https://mybinder.org/v2/gh/AudioSceneDescriptionFormat/splines/master?filepath=doc/index.ipynb
https://github.com/AudioSceneDescriptionFormat/splines
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/euclidean/polynomials.ipynb
https://en.wikipedia.org/wiki/Polynomial

[4]:


d
c
b
a


We can create a polynomial by multiplying the basis functions with the coefficients and then adding
all terms:

[5]: b_monomial.dot(coefficients)

[5]: dt3 + ct2 + bt + a

This is a cubic polynomial in its canonical form (because it uses monomial basis functions).

Let’s take a closer look at those basis functions (with some help from helper.py):

[6]: from helper import plot_basis

[7]: plot_basis(*b_monomial)

It doesn’t look like much, but every conceivable cubic polynomial can be formulated as exactly one
linear combination of those basis functions (i.e. using one specific list of coefficients).

An example polynomial that’s not in canonical form . . .

[8]: example_polynomial = (2 * t - 1)**3 + (t + 1)**2 - 6 * t + 1
example_polynomial

[8]: (2t− 1)3 + (t + 1)2 − 6t + 1

[9]: from helper import plot_sympy, grid_lines

[10]: plot_sympy(example_polynomial, (t, 0, 1))
grid_lines([0, 1], [0, 0.5, 1])

3

helper.py

. . . can simply be re-written with monomial basis functions:

[11]: example_polynomial.expand()

[11]: 8t3 − 11t2 + 2t + 1

Any polynomial can be rewritten using any set of basis functions (of appropriate degree).

In later sections we will see more basis functions, for example those that are used for Hermite (page 16),
Bézier (page 40) and Catmull–Rom (page 62) splines.

In the previous example, we have used scalar coefficients to create a one-dimensional polynomial. We
can use two-dimensional coefficients to create two-dimensional polynomial curves. Let’s create a little
class to try this:

[12]: import numpy as np

class CubicPolynomial:

grid = 0, 1

def __init__(self, d, c, b, a):
self.coeffs = d, c, b, a

def evaluate(self, t):
t = np.expand_dims(t, -1)
return t**[3, 2, 1, 0] @ self.coeffs

Note

The @ operator is used here to do NumPy’s matrix multiplication2.

Since this class has the same interface as the splines that will be discussed in later sections, we can use
a spline helper function from helper.py for plotting:

[13]: from helper import plot_spline_2d

[14]: poly_2d = CubicPolynomial([-1.5, 5], [1.5, -8.5], [1, 4], [3, 2])

2 https://numpy.org/doc/stable/reference/generated/numpy.matmul.html

4

https://numpy.org/doc/stable/reference/generated/numpy.matmul.html
helper.py

[15]: plot_spline_2d(poly_2d, dots_per_second=30, chords=False)

This class can also be used with three and more dimensions. The class splines.Monomial (page 159) can
be used to try this with arbitrary polynomial degree.
. doc/euclidean/polynomials.ipynb ends here.

The following section was generated from doc/euclidean/lagrange.ipynb .

1.2 Lagrange Interpolation

Before diving into splines, let’s have a look at an arguably simpler interpolation method using poly-
nomials: Lagrange interpolation3.

This is easy to implement, but as we will see, it has quite severe limitations, which will motivate us to
look into splines later.

[1]: import matplotlib.pyplot as plt
import numpy as np

One-dimensional Example

Assume we have N time instants ti, with 0 ≤ i < N:

[2]: ts = -1.5, 0.5, 1.7, 3, 4

. . . and for each time instant we are given an associated value xi:

[3]: xs = 2, -1, 1.3, 3.14, 1

Our task is now to find a function that yields the given xi values for the given times ti and some
“reasonable” interpolated values when evaluated at time values in-between.

The idea of Lagrange interpolation is to create a separate polynomial `j(t) for each of the N given time
instants, which will be weighted by the associated xj. The final interpolation function is the weighted
sum of these N polynomials:

L(t) =
N−1

∑
j=0

xj`j(t)

3 https://en.wikipedia.org/wiki/Lagrange_polynomial

5

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/euclidean/polynomials.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/euclidean/lagrange.ipynb
https://en.wikipedia.org/wiki/Lagrange_polynomial

In order for this to actually work, the polynomials must fulfill the following requirements:

• Each polynomial must yield 1 when evaluated at its associated time ti.

• Each polynomial must yield 0 at all other instances in the set of given times.

To satisfy the second point, let’s create a product with a term for each of the relevant times and make
each of those factors vanish when evaluated at their associated time. As an example we look at the
basis for t3 = 3:

[4]: def maybe_polynomial_3(t):
t = np.asarray(t)
return (t - (-1.5)) * (t - 0.5) * (t - 1.7) * (t - 4)

[5]: maybe_polynomial_3(ts)

[5]: array([-0. , 0. , -0. , -14.625, 0.])

As we can see, this indeed fulfills the second requirement. Note that we were given 5 time instants,
but we need only 4 product terms (corresponding to the 4 roots of the polynomial). Mathematically,
this could be written as

`j(t)
?
=

N−1

∏
i=0
i 6=j

t− ti.

Now, for the first requirement, we can divide each term to yield 1 when evaluated at t = 3 (luckily,
this will not violate the second requirement). If each term is 1, the whole product will also be 1:

[6]: def polynomial_3(t):
t = np.asarray(t)
return (

(t - (-1.5)) / (3 - (-1.5)) *
(t - 0.5) / (3 - 0.5) *
(t - 1.7) / (3 - 1.7) *
(t - 4) / (3 - 4))

[7]: polynomial_3(ts)

[7]: array([0., -0., 0., 1., -0.])

That’s it!

Generally, Lagrange basis polynomials can be written as

`j(t) =
N−1

∏
i=0
i 6=j

t− ti
tj − ti

.

To get a better idea what’s going on between the given time instances ti, let’s plot this polynomial
(with a little help from helper.py):

[8]: from helper import grid_lines

[9]: plot_times = np.linspace(ts[0], ts[-1], 100)

[10]: plt.plot(plot_times, polynomial_3(plot_times))
grid_lines(ts, [0, 1])

6

helper.py

We can see from its shape that this is a polynomial of degree 4, which makes sense because the product
we are using has 4 terms containing one t each. We can also see that it has the value 0 at each of the
initially provided time instances ti, except for t3 = 3, where it has the value 1.

The above calculation can be easily generalized to be able to get any one of the set of polynomials
defined by an arbitrary list of time instants:

[11]: def lagrange_polynomial(times, i, t):
"""i-th Lagrange polynomial for the given time values, evaluated at t."""
t = np.asarray(t)
product = np.multiply.reduce
return product([

(t - times[j]) / (times[i] - times[j])
for j in range(len(times))
if i != j

])

Now we can calculate and visualize all 5 polynomials for our 5 given time instants:

[12]: polys = np.column_stack([lagrange_polynomial(ts, i, plot_times)
for i in range(len(ts))])

[13]: plt.plot(plot_times, polys)
grid_lines(ts, [0, 1])

7

Finally, the interpolated values can be obtained by applying the given xi values as weights to the
polynomials and summing everything together:

[14]: weighted_polys = polys * xs

[15]: interpolated = np.sum(weighted_polys, axis=-1)

[16]: plt.plot(plot_times, weighted_polys)
plt.plot(plot_times, interpolated, color='black', linestyle='dashed')
plt.scatter(ts, xs, color='black')
grid_lines(ts)

Neville’s Algorithm

An alternative way to calculate interpolated values is Neville’s algorithm4 (see also [BG88], figure 2).
We mention this algorithm mainly because it is referenced in the derivation of non-uniform Catmull–Rom
splines (page 70) and the description of the Barry–Goldman algorithm (page 75).

As main building block, we need a linear interpolation between two values in a given time interval:

4 https://en.wikipedia.org/wiki/Neville%27s_algorithm

8

https://en.wikipedia.org/wiki/Neville%27s_algorithm

[17]: def lerp(xs, ts, t):
"""Linear intERPolation.

Returns the interpolated value(s) at time(s) *t*,
given two values/vertices *xs* at times *ts*.

The two x-values can be scalars or vectors,
or even higher-dimensional arrays
(as long as the shape of *t* is compatible).

"""
x_begin, x_end = map(np.asarray, xs)
t_begin, t_end = ts
if not np.isscalar(t):

This allows using an array of *t* values:
t = np.expand_dims(t, axis=-1)

return (x_begin * (t_end - t) + x_end * (t - t_begin)) / (t_end - t_begin)

In each stage of the algorithm, linear interpolation is used to interpolate between adjacent values,
leading to one fewer value than in the stage before. The new values are used as input to the next stage
and so on. When there is only one value left, this value is the result.

The only tricky part is to choose the appropriate time interval for each interpolation. In the first
stage, the intervals between the given time values are used. In the second stage, each time interval is
combined with the following one, leading to one fewer time intervals in total. In the third stage, each
time interval is combined with the following two intervals, and so on until the last stage, where all
time intervals are combined into a single large interval.

[18]: def neville(xs, ts, t):
"""Lagrange interpolation using Neville's algorithm.

Returns the interpolated value(s) at time(s) *t*,
given the values *xs* at times *ts*.

"""
assert len(xs) == len(ts)
while len(xs) > 1:

step = len(ts) - len(xs) + 1
xs = [

lerp(*args, t)
for args in zip(zip(xs, xs[1:]), zip(ts, ts[step:]))]

return xs[0]

[19]: plt.plot(plot_times, neville(xs, ts, plot_times))
plt.scatter(ts, xs)
grid_lines(ts)

9

Two-dimensional Example

Lagrange interpolation can of course also be used in higher-dimensional spaces. To show this, let’s
create a little class:

[20]: class Lagrange:

def __init__(self, vertices, grid):
assert len(vertices) == len(grid)
self.vertices = vertices
self.grid = grid

def evaluate(self, t):
return neville(self.vertices, self.grid, t)

Since this class has the same interface as the splines that will be discussed in the following sections,
we can use a spline helper function from helper.py for plotting:

[21]: from helper import plot_spline_2d

This time, we have a list of two-dimensional vectors and the same list of associated times as before:

[22]: l1 = Lagrange([(2, -2), (-1, 0), (1.3, 0.5), (3.14, 0), (1, -1)], ts)

[23]: plot_spline_2d(l1)

10

helper.py

Runge’s Phenomenon

This seems to work reasonably well, but as indicated above, Lagrange implementation has a severe
limitation. This limitation gets more apparent when using more vertices, which leads to a higher-
degree polynomial.

[24]: vertices = [
(1, 0),
(1, 2),
(3, 0),
(2, -1),
(2.5, 1.5),
(5, 2),
(6, 1),
(5, 0),
(6, -1),
(7, 2),
(4, 3),

]
times = range(len(vertices))

[25]: l2 = Lagrange(vertices, times)
plot_spline_2d(l2)

11

Here we see a severe overshooting effect, most pronounced at the beginning and the end of the curve.
This effect is called Runge’s phenomenon5.

Long story short, Lagrange interpolation is typically not usable for drawing curves. For comparison,
let’s use the same positions and time values and create a Catmull–Rom spline (page 55):

[26]: import splines

[27]: cr_spline = splines.CatmullRom(vertices, times)

[28]: plot_spline_2d(cr_spline)

This clearly doesn’t have the overshooting problem we saw above.

Note

The splines.CatmullRom (page 161) class uses “natural” end conditions (page 101) by default.

. doc/euclidean/lagrange.ipynb ends here.

5 https://en.wikipedia.org/wiki/Runge’s_phenomenon

12

https://en.wikipedia.org/wiki/Runge's_phenomenon
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/euclidean/lagrange.ipynb

1.3 Hermite Splines

Hermite splines6 (named after Charles Hermite7) are the building blocks for many other types of inter-
polating polynomial splines, for example natural splines (page 29) and Catmull–Rom splines (page 55).

A Python implementation of (cubic) Hermite splines is available in the splines.CubicHermite (page 160)
class.

The following section was generated from doc/euclidean/hermite-properties.ipynb .

Properties of Hermite Splines

Hermite splines are interpolating polynomial splines, where for each polynomial segment, the desired
value at the start and end is given (obviously!), as well as the values of a certain number of derivatives
at the start and/or the end.

Most commonly, cubic (= degree 3) Hermite splines are used. Cubic polynomials have 4 coefficients to
be chosen freely, and those are determined for each segment of a cubic Hermite spline by providing 4

pieces of information: the function value and the first derivative, both at the beginning and the end of
the segment.

Other degrees of Hermite splines are possible (but much rarer), for example quintic (= degree 5)
Hermite splines, which are defined by the second derivatives at the start and end of each segment, on
top of the first derivatives and the function values (6 values in total).

Hermite splines with even degrees are probably still rarer. For example, quadratic (= degree 2) Hermite
splines can be constructed by providing the function values at both beginning and end of each seg-
ment, but only one first derivative, either at the beginning or at the end (leading to 3 values in total).
Make sure not to confuse them with quartic (= degree 4) Hermite splines, which are defined by 5 values
per segment: function value and first derivative at both ends, and one of the second derivatives.

However, cubic Hermite splines are so overwhelmingly common that they are often simply referred to
as Hermite splines.

From this point forward, we will only be considering cubic Hermite splines.

[1]: import splines

[2]: import matplotlib.pyplot as plt
import numpy as np

We import a few helper functions from helper.py:

[3]: from helper import plot_slopes_1d, plot_spline_2d, plot_tangents_2d, grid_lines

Let’s look at a one-dimensional spline first. We provide a list of values (to be interpolated) and a list
of associated parameter values (or time instances, if you will).

[4]: values = 2, 4, 3, 3
grid = 5, 7, 8, 10

Since (cubic) Hermite splines ask for the first derivative at the beginning and end of each segment, we
provide a list of slopes (outgoing, incoming, outgoing, incoming, . . .).

[5]: slopes = 0, 0, -1, 0.5, 1, 3

We are using the splines.CubicHermite (page 160) class to create the spline:
6 https://en.wikipedia.org/wiki/Cubic_Hermite_spline
7 https://en.wikipedia.org/wiki/Charles_Hermite

13

https://en.wikipedia.org/wiki/Cubic_Hermite_spline
https://en.wikipedia.org/wiki/Charles_Hermite
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/euclidean/hermite-properties.ipynb
helper.py

[6]: s1 = splines.CubicHermite(values, slopes, grid=grid)

OK, let’s plot this one-dimensional spline, together with the given values and slopes.

[7]: times = np.linspace(grid[0], grid[-1], 100)

[8]: plt.plot(times, s1.evaluate(times))
plt.scatter(grid, values)
plot_slopes_1d(slopes, values, grid)
grid_lines(grid)

Let’s try a two-dimensional curve now (higher dimensions work similarly).

[9]: vertices = [
(0, 0),
(2, 0),
(1, 1),

]

The derivative of a curve is its tangent vector, so we provide a list of them (outgoing, incoming,
outgoing, incoming, . . .):

[10]: tangents = [
(2, 1),
(0.1, 0.1),
(-0.5, 1),
(1, 0),

]

[11]: s2 = splines.CubicHermite(vertices, tangents)

[12]: fig, ax = plt.subplots()
plot_spline_2d(s2, ax=ax)
plot_tangents_2d(tangents, vertices, ax=ax)

14

If no parameter values are given (by means of the grid argument), the splines.CubicHermite (page 160)
class creates a uniform spline, i.e. all parameter intervals are automatically chosen to be 1. We can
create a non-uniform spline by providing our own parameter values:

[13]: grid = 0, 0.5, 3

Using the same vertices and tangents, we can clearly see how the new parameter values influence the
shape and the speed of the curve (the dots are plotted at equal time intervals!):

[14]: s3 = splines.CubicHermite(vertices, tangents, grid=grid)

[15]: plot_spline_2d(s3, ax=ax)
fig

[15]:

Hermite splines are by default C0 continuous. If adjacent tangents are chosen to point into the same
direction, the spline becomes G1 continuous.

If on top of having the same direction, adjacent tangents are chosen to have the same length, that makes
the spline C1 continuous. An example for that are Catmull–Rom splines (page 55). Kochanek–Bartels
splines (page 84) can also be C1 continuous, but only if their “continuity” parameter C is 0.

There is one unique choice of all of a cubic Hermite spline’s tangents (given certain end conditions
(page 101)) that leads to continuous second derivatives at all vertices, making the spline C2 continuous.
This is what natural splines (page 29) are all about.
. doc/euclidean/hermite-properties.ipynb ends here.

15

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/euclidean/hermite-properties.ipynb

The following section was generated from doc/euclidean/hermite-uniform.ipynb .

Uniform Cubic Hermite Splines

We derive the basis matrix as well as the basis polynomials for cubic (= degree 3) Hermite splines. The
derivation for other degrees is left as an exercise for the reader.

In this notebook, we consider uniform spline segments, i.e. the parameter in each segment varies from 0
to 1. The derivation for non-uniform cubic Hermite splines can be found in a separate notebook (page 24).

[1]: import sympy as sp
sp.init_printing(order='grevlex')

We load a few tools from utility.py:

[2]: from utility import NamedExpression, NamedMatrix

[3]: t = sp.symbols('t')

We are considering a single cubic polynomial segment of a Hermite spline (which is sometimes called
a Ferguson cubic).

To simplify the indices in the following derivation, we are looking at the fifth polynomial segment p4(t)
from x4 to x5, where 0 ≤ t ≤ 1. The results will be easily generalizable to an arbitrary polynomial
segment pi(t) from xi to xi+1.

The polynomial has 4 coefficients, a4 to d4.

[4]: coefficients = sp.Matrix(sp.symbols('a:dbm4')[::-1])
coefficients

[4]:


d4
c4
b4
a4


Combined with the monomial basis . . .

[5]: b_monomial = sp.Matrix([t**3, t**2, t, 1]).T
b_monomial

[5]:
[
t3 t2 t 1

]
. . . the coefficients form an expression for our polynomial segment p4(t):

[6]: p4 = NamedExpression('pbm4', b_monomial.dot(coefficients))
p4

[6]: p4 = d4t3 + c4t2 + b4t + a4

For more information about polynomials, see Polynomial Parametric Curves (page 2).

Let’s also calculate the first derivative (a.k.a. velocity, a.k.a. tangent vector), while we are at it:

[7]: pd4 = p4.diff(t)
pd4

[7]: d
dt

p4 = 3d4t2 + 2c4t + b4

To generate a Hermite spline segment, we have to provide the value of the polynomial at the start and
end point of the segment (at times t = 0 and t = 1, respectively). We also have to provide the first

16

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/euclidean/hermite-uniform.ipynb
utility.py

derivative at those same points.

x4 = p4|t=0

x5 = p4|t=1

ẋ4 =
d
dt

p4

∣∣∣∣
t=0

ẋ5 =
d
dt

p4

∣∣∣∣
t=1

We call those 4 values the control values of the segment.

Evaluating the polynomial and its derivative at times 0 and 1 leads to 4 expressions for our 4 control
values:

[8]: x4 = p4.evaluated_at(t, 0).with_name('xbm4')
x5 = p4.evaluated_at(t, 1).with_name('xbm5')
xd4 = pd4.evaluated_at(t, 0).with_name('xdotbm4')
xd5 = pd4.evaluated_at(t, 1).with_name('xdotbm5')

[9]: display(x4, x5, xd4, xd5)
x4 = a4

x5 = a4 + b4 + c4 + d4

ẋ4 = b4

ẋ5 = b4 + 2c4 + 3d4

Basis Matrix

Given an input vector of control values . . .

[10]: control_values_H = NamedMatrix(sp.Matrix([x4.name,
x5.name,
xd4.name,
xd5.name]))

control_values_H.name

[10]:


x4
x5
ẋ4
ẋ5


. . . we want to find a way to transform those into the coefficients of our cubic polynomial.

[11]: M_H = NamedMatrix(r'{M_\text{H}}', 4, 4)

[12]: coefficients_H = NamedMatrix(coefficients, M_H.name * control_values_H.name)
coefficients_H

[12]:


d4
c4
b4
a4

 = MH


x4
x5
ẋ4
ẋ5


This way, we can express our previously unknown coefficients in terms of the given control values.

17

However, in order to make it easy to determine the coefficients of the basis matrix MH , we need the
equation the other way around (by left-multiplying by the inverse):

[13]: control_values_H.expr = M_H.name.I * coefficients
control_values_H

[13]:


x4
x5
ẋ4
ẋ5

 = MH
−1


d4
c4
b4
a4


We can now insert the expressions for the control values that we obtained above . . .

[14]: substitutions = x4, x5, xd4, xd5

[15]: control_values_H.subs_symbols(*substitutions)

[15]:


a4
a4 + b4 + c4 + d4

b4
b4 + 2c4 + 3d4

 = MH
−1


d4
c4
b4
a4


. . . and from this equation we can directly read off the matrix coefficients of MH

−1:

[16]: M_H.I = sp.Matrix(
[[expr.coeff(cv) for cv in coefficients]
for expr in control_values_H.subs_symbols(*substitutions).name])

M_H.I

[16]:

MH
−1 =


0 0 0 1
1 1 1 1
0 0 1 0
3 2 1 0


The same thing for copy & paste purposes:

[17]: print(_.expr)

Matrix([[0, 0, 0, 1], [1, 1, 1, 1], [0, 0, 1, 0], [3, 2, 1, 0]])

This transforms the coefficients of the polynomial into our control values, but we need it the other way
round, which we can simply get by inverting the matrix:

[18]: M_H

[18]:

MH =


2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0


Again, for copy & paste:

[19]: print(_.expr)

Matrix([[2, -2, 1, 1], [-3, 3, -2, -1], [0, 0, 1, 0], [1, 0, 0, 0]])

18

Basis Polynomials

Multiplying the monomial basis with this matrix yields the Hermite basis polynomials:

[20]: b_H = NamedMatrix(r'{b_\text{H}}', b_monomial * M_H.expr)
b_H.factor().simplify().T

[20]:

bH
T =


(t− 1)2 (2t + 1)

t2 (−2t + 3)
t (t− 1)2

t2 (t− 1)


Let’s plot the basis polynomials with some help from helper.py:

[21]: from helper import plot_basis

[22]: plot_basis(*b_H.expr, labels=sp.symbols('xbm_i xbm_i+1 xdotbm_i xdotbm_i+1'))

Note that the basis function associated with xi has the value 1 at the beginning, while all others are 0
at that point. For this reason, the linear combination of all basis functions at t = 0 simply adds up to
the value xi (which is exactly what we wanted to happen!).

Similarly, the basis function associated with ẋi has a first derivative of +1 at the beginning, while all
others have a first derivative of 0. Therefore, the linear combination of all basis functions at t = 0 turns
out to have a first derivative of ẋi (what a coincidence!).

While t progresses towards 1, both functions must relinquish their influence to the other two basis
functions.

At the end (when t = 1), the basis function associated with xi+1 is the only one that has a non-zero
value. More concretely, it has the value 1. Finally, the basis function associated with ẋi+1 is the only
one with a non-zero first derivative. In fact, it has a first derivative of exactly +1 (the function values
leading up to that have to be negative because the final function value has to be 0).

This can be summarized by:

[23]: sp.Matrix([[
b.subs(t, 0),
b.subs(t, 1),
b.diff(t).subs(t, 0),

(continues on next page)

19

helper.py

(continued from previous page)

b.diff(t).subs(t, 1),
] for b in b_H.expr])

[23]:


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



Example Plot

To quickly check whether the matrix MH does what we expect, let’s plot an example segment:

[24]: import numpy as np

If we use the same API as for the other splines, we can reuse the helper functions for plotting from
helper.py.

[25]: from helper import plot_spline_2d, plot_tangents_2d

[26]: class UniformHermiteSegment:

grid = 0, 1

def __init__(self, control_values):
self.coeffs = sp.lambdify([], M_H.expr)() @ control_values

def evaluate(self, t):
t = np.expand_dims(t, -1)
return t**[3, 2, 1, 0] @ self.coeffs

Note

The @ operator is used here to do NumPy’s matrix multiplication8.

[27]: vertices = [0, 0], [5, 1]
tangents = [2, 3], [0, -2]

[28]: s = UniformHermiteSegment([*vertices, *tangents])

[29]: plot_spline_2d(s, chords=False)
plot_tangents_2d(tangents, vertices)

8 https://numpy.org/doc/stable/reference/generated/numpy.matmul.html

20

helper.py
https://numpy.org/doc/stable/reference/generated/numpy.matmul.html

Relation to Bézier Splines

Above, we were using two positions (start and end) and two tangent vectors (at those same two
positions) as control values:

[30]: control_values_H.name

[30]:


x4
x5
ẋ4
ẋ5


What about using four positions (and no tangent vectors) instead?

Let’s use the point x̃4 as a “handle” (connected to x4) that controls the tangent vector. Same for x̃5
(connected to x5).

And since the tangents looked unwieldily long in the plot above (compared to the effect they have on
the shape of the curve), let’s put the handles only at a third of the length of the tangents, shall we?

x̃4 = x4 +
ẋ4

3

x̃5 = x5 −
ẋ5

3

[31]: control_values_B = NamedMatrix(sp.Matrix([
x4.name,
sp.Symbol('xtildebm4'),
sp.Symbol('xtildebm5'),
x5.name,

]), sp.Matrix([
x4.name,
x4.name + xd4.name / 3,
x5.name - xd5.name / 3,
x5.name,

]))
control_values_B

21

[31]: 
x4
x̃4
x̃5
x5

 =


x4

x4 +
ẋ4
3

x5 − ẋ5
3

x5


Now let’s try to come up with a matrix that transforms our good old Hermite control values into our
new control points.

[32]: M_HtoB = NamedMatrix(r'{M_\text{H\toB}}', 4, 4)

[33]: NamedMatrix(control_values_B.name, M_HtoB.name * control_values_H.name)

[33]:


x4
x̃4
x̃5
x5

 = MH→B


x4
x5
ẋ4
ẋ5


We can immediately read the matrix coefficients off the previous expression.

[34]: M_HtoB.expr = sp.Matrix([[expr.coeff(cv) for cv in control_values_H.name]
for expr in control_values_B.expr])

M_HtoB.pull_out(sp.S.One / 3)

[34]:

MH→B =
1
3


3 0 0 0
3 0 1 0
0 3 0 −1
0 3 0 0


[35]: print(_.expr)

(1/3)*Matrix([
[3, 0, 0, 0],
[3, 0, 1, 0],
[0, 3, 0, -1],
[0, 3, 0, 0]])

The inverse of this matrix transforms our new control points into Hermite control values:

[36]: M_BtoH = NamedMatrix(r'{M_\text{B\toH}}', M_HtoB.I.expr)
M_BtoH

[36]:

MB→H =


1 0 0 0
0 0 0 1
−3 3 0 0
0 0 −3 3


[37]: print(_.expr)

Matrix([[1, 0, 0, 0], [0, 0, 0, 1], [-3, 3, 0, 0], [0, 0, -3, 3]])

When we combine MH with this new matrix, we get a matrix which leads us to a new set of basis
polynomials associated with the 4 control points.

[38]: M_B = NamedMatrix(r'{M_\text{B}}', M_H.name * M_BtoH.name)
M_B

22

[38]: MB = MHMB→H

[39]: M_B = M_B.subs_symbols(M_H, M_BtoH).doit()
M_B

[39]:

MB =


−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0


[40]: b_B = NamedMatrix(r'{b_\text{B}}', b_monomial * M_B.expr)

b_B.T

[40]:

bB
T =


−t3 + 3t2 − 3t + 1

3t3 − 6t2 + 3t
−3t3 + 3t2

t3


[41]: plot_basis(

*b_B.expr,
labels=sp.symbols('xbm_i xtildebm_i xtildebm_i+1 xbm_i+1'))

Those happen to be the cubic Bernstein polynomials and it turns out that we just invented Bézier curves!
See the section about Bézier splines (page 39) for more information about them.

We chose the additional control points to be located at 1
3 of the tangent vector. Let’s quickly visualize

this using the example from above and MH→B:

[42]: points = sp.lambdify([], M_HtoB.expr)() @ [*vertices, *tangents]

[43]: import matplotlib.pyplot as plt

[44]: plot_spline_2d(s, chords=False)
plot_tangents_2d(tangents, vertices)
plt.scatter(*points.T, marker='X', color='black')
plt.annotate(r'$\quad\tilde{\bf{x}}_0$', points[1])
plt.annotate(r'$\tilde{\bf{x}}_1\quad$', points[2], ha='right');

23

. doc/euclidean/hermite-uniform.ipynb ends here.

The following section was generated from doc/euclidean/hermite-non-uniform.ipynb .

Non-Uniform Cubic Hermite Splines

We have already derived uniform cubic Hermite splines (page 16), where the parameter t ranges from 0
to 1.

When we want to use non-uniform cubic Hermite splines, and therefore arbitrary ranges from ti to ti+1,
we have (at least) two possibilities:

• Do the same derivations as in the uniform case, except when we previously evaluated an expres-
sion at the parameter value t = 0, we now evaluate it at the value t = ti. Of course we do the
same with t = 1→ t = ti+1.

• Re-scale the non-uniform parameter using t → t−ti
ti+1−ti

(which makes the new parameter go from
0 to 1) and then simply use the results from the uniform case.

The first approach leads to more complicated expressions in the basis matrix and the basis polyno-
mials, but it has the advantage that the parameter value doesn’t have to be re-scaled each time when
evaluating the spline for a given parameter (which might be slightly more efficient).

The second approach has the problem that it doesn’t actually work correctly, but we will see that we
can make a slight adjustment to fix that problem (spoiler alert: we will have to multiply the tangent
vectors by ∆i).

The class splines.CubicHermite (page 160) is implemented using the second approach (because its parent
class splines.Monomial (page 159) also uses the re-scaling approach).

We show the second approach here, but the first approach can be done very similarly, with only very
few changed steps. The appropriate changes are mentioned below.

[1]: import sympy as sp
sp.init_printing(order='grevlex')

[2]: from utility import NamedExpression, NamedMatrix

To simplify the indices in the following derivation, we are looking at the fifth polynomial segment
p4(t) from x4 to x5, where t4 ≤ t ≤ t5. The results will be easily generalizable to an arbitrary
polynomial segment pi(t) from xi to xi+1.

24

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/euclidean/hermite-uniform.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/euclidean/hermite-non-uniform.ipynb

[3]: t, t4, t5 = sp.symbols('t t4:6')

[4]: coefficients = sp.Matrix(sp.symbols('a:dbm4')[::-1])
b_monomial = sp.Matrix([t**3, t**2, t, 1]).T
b_monomial.dot(coefficients)

[4]: d4t3 + c4t2 + b4t + a4

We use the humble cubic polynomial (with monomial basis) to represent our curve segment p4(t), but
we re-scale the parameter to map t4 → 0 and t5 → 1:

[5]: p4 = NamedExpression('pbm4', _.subs(t, (t - t4) / (t5 - t4)))

If you don’t want to do the re-scaling, simply un-comment the next line!

[6]: #p4 = NamedExpression('pbm4', b_monomial.dot(coefficients))

Either way, this is our polynomial segment . . .

[7]: p4

[7]:
p4 =

d4 (t− t4)
3

(−t4 + t5)
3 +

c4 (t− t4)
2

(−t4 + t5)
2 +

b4 (t− t4)

−t4 + t5
+ a4

. . . and it’s derivative/velocity/tangent vectors:

[8]: pd4 = p4.diff(t)
pd4

[8]: d
dt

p4 =
3d4 (t− t4)

2

(−t4 + t5)
3 +

c4 (2t− 2t4)

(−t4 + t5)
2 +

b4

−t4 + t5

The next steps are very similar to what we did in the uniform case (page 16), except that we use t4 and
t5 instead of 0 and 1, respectively.

[9]: x4 = p4.evaluated_at(t, t4).with_name('xbm4')
x5 = p4.evaluated_at(t, t5).with_name('xbm5')
xd4 = pd4.evaluated_at(t, t4).with_name('xdotbm4')
xd5 = pd4.evaluated_at(t, t5).factor().with_name('xdotbm5')

To simplify things, we define a new symbol ∆4 = t5 − t4, representing the duration of the current
segment. However, we only use this for simplifying the display, further calculations are still carried
out with ti.

[10]: delta = {
t5 - t4: sp.Symbol('Delta4'),

}

[11]: display(x4, x5, xd4.subs(delta), xd5.subs(delta))
x4 = a4

x5 = a4 + b4 + c4 + d4

ẋ4 =
b4

∆4

25

ẋ5 =
b4 + 2c4 + 3d4

∆4

Basis Matrix

[12]: M_H = NamedMatrix(r'{M_{\text{H},4}}', 4, 4)

[13]: control_values_H = NamedMatrix(
sp.Matrix([x4.name, x5.name, xd4.name, xd5.name]),
M_H.name.I * coefficients)

control_values_H

[13]:


x4
x5
ẋ4
ẋ5

 = MH,4
−1


d4
c4
b4
a4


[14]: substitutions = x4, x5, xd4, xd5

[15]: control_values_H.subs_symbols(*substitutions).subs(delta)

[15]:


a4
a4 + b4 + c4 + d4

b4
∆4

b4+2c4+3d4
∆4

 = MH,4
−1


d4
c4
b4
a4



[16]: M_H.I = sp.Matrix([
[expr.expand().coeff(c) for c in coefficients]
for expr in control_values_H.subs_symbols(*substitutions).name])

M_H.I.subs(delta)

[16]:

MH,4
−1 =


0 0 0 1
1 1 1 1
0 0 1

∆4
0

3
∆4

2
∆4

1
∆4

0


[17]: print(_.expr)

Matrix([[0, 0, 0, 1], [1, 1, 1, 1], [0, 0, 1/Delta4, 0], [3/Delta4, 2/Delta4, 1/
↪→Delta4, 0]])

[18]: M_H.factor().subs(delta)

[18]:

MH,4 =


2 −2 ∆4 ∆4
−3 3 −2∆4 −∆4
0 0 ∆4 0
1 0 0 0


[19]: print(_.expr)

Matrix([[2, -2, Delta4, Delta4], [-3, 3, -2*Delta4, -Delta4], [0, 0, Delta4, 0],␣
↪→[1, 0, 0, 0]])

26

Basis Polynomials

[20]: b_H = NamedMatrix(r'{b_{\text{H},4}}', b_monomial * M_H.expr)
b_H.factor().subs(delta).simplify().T

[20]:

bH,4
T =


(t− 1)2 (2t + 1)

t2 (−2t + 3)
∆4t (t− 1)2

∆4t2 (t− 1)


Those are the non-uniform Hermite basis functions. Not surprisingly, they are different for each seg-
ment, because generally the values ∆i are different in the non-uniform case.

Example Plot

To quickly check whether the matrix MH,4 does what we expect, let’s plot an example segment:

[21]: import numpy as np

If we use the same API as for the other splines, we can reuse the helper functions for plotting from
helper.py:

[22]: from helper import plot_spline_2d, plot_tangents_2d

The following code re-scales the parameter with t = (t - begin) / (end - begin). If you did not
re-scale t in the derivation above, you’ll have to remove this line.

[23]: class HermiteSegment:

def __init__(self, control_values, begin, end):
array = sp.lambdify([t4, t5], M_H.expr)(begin, end)
self.coeffs = array @ control_values
self.grid = begin, end

def evaluate(self, t):
t = np.expand_dims(t, -1)
begin, end = self.grid
If you derived M_H without re-scaling t, remove the following line:
t = (t - begin) / (end - begin)
return t**[3, 2, 1, 0] @ self.coeffs

[24]: vertices = [0, 0], [5, 1]
tangents = [2, 3], [0, -2]

We can simulate the uniform case by specifying a parameter range from 0 to 1:

[25]: s1 = HermiteSegment([*vertices, *tangents], 0, 1)

[26]: plot_spline_2d(s1, chords=False)
plot_tangents_2d(tangents, vertices)

27

helper.py

But other ranges should work as well:

[27]: s2 = HermiteSegment([*vertices, *tangents], 2.1, 5.5)

[28]: plot_spline_2d(s2, chords=False)
plot_tangents_2d(tangents, vertices)

Utilizing the Uniform Basis Matrix

If you did not re-scale t in the beginning of the derivation, you can use the matrix MH,i to calculate
the monomial coefficients of each segment (as shown in the example code above) and be done with it.
The following simplification does only apply if you did re-scale t.

If you did re-scale t, the basis matrix and the basis polynomials will look very similar to the uniform
case (page 16), but they are not quite the same. This means that simply re-scaling the parameter is not
enough to correctly use the uniform results for implementing non-uniform Hermite splines.

However, we can see that the only difference is that the components associated with ẋ4 and ẋ5 are
simply multiplied by ∆4. That means if we re-scale the parameter and multiply the given tangent
vectors by ∆i, we can indeed use the uniform workflow.

28

Just to make sure we are actually telling the truth, let’s check that the control values with scaled
tangent vectors . . .

[29]: control_values_H_scaled = sp.Matrix([x4.name,
x5.name,
(t5 - t4) * xd4.name,
(t5 - t4) * xd5.name])

control_values_H_scaled.subs(delta)

[29]:


x4
x5

∆4 ẋ4
∆4 ẋ5


. . . really lead to the same result as when using the uniform basis matrix:

[30]: sp.Eq(
sp.simplify(M_H.expr * control_values_H.name),
sp.simplify(sp.Matrix([[2, -2, 1, 1],

[-3, 3, -2, -1],
[0, 0, 1, 0],
[1, 0, 0, 0]]) * control_values_H_scaled))

[30]: True

The following line will fail if you did not rescale t:

[31]: assert _ == True

Long story short, to implement a non-uniform cubic Hermite spline segment, we can simply re-scale
the parameter to a range from 0 to 1 (by substituting t→ t−ti

ti+1−ti
), multiply both given tangent vectors

by ∆i = ti+1− ti and then simply use the implementation of the uniform cubic Hermite spline segment.

Another way of looking at this is to consider the uniform polynomial segment ui(t) and its tangent
vector (i.e. first derivative) u′i(t). If we want to know the tangent vector after substituting t→ t−ti

∆i
, we

have to use the chain rule9 (with the inner derivative being 1
∆i

):

d
dt

ui

(
t− ti

∆i

)
=

1
∆i

u′i

(
t− ti

∆i

)
.

This means the tangent vectors have been shrunk by ∆i! If we want to maintain the original lengths of
our tangent vectors, we can simply scale them by ∆i beforehand.
. doc/euclidean/hermite-non-uniform.ipynb ends here.

1.4 Natural Splines

Sometimes simply called (cubic) spline interpolation10, a natural spline is modelled after a drawing
tool called spline11, which is made from a thin piece of elastic material like wood or metal.

A Python implementation is available in the class splines.Natural (page 161). Alternatively, the Cubic-
Spline12 class from SciPy can be used.

9 https://en.wikipedia.org/wiki/Chain_rule
10 https://en.wikipedia.org/wiki/Spline_interpolation
11 https://en.wiktionary.org/wiki/spline
12 https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicSpline.html

29

https://en.wikipedia.org/wiki/Chain_rule
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/euclidean/hermite-non-uniform.ipynb
https://en.wikipedia.org/wiki/Spline_interpolation
https://en.wiktionary.org/wiki/spline
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicSpline.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicSpline.html

The following section was generated from doc/euclidean/natural-properties.ipynb .

Properties of Natural Splines

The most important property of natural splines is that they are C2 continuous, which means that the
second derivatives match at section borders.

[1]: import splines

[2]: vertices = [
(0, 0),
(1, 0),
(2, 1),
(3, 1),

]

We use the class splines.Natural (page 161) . . .

[3]: s = splines.Natural(vertices)

. . . and a plotting function from helper.py:

[4]: from helper import plot_spline_2d

[5]: plot_spline_2d(s)

[6]: def plot_natural(*args, **kwargs):
plot_spline_2d(splines.Natural(*args, **kwargs), chords=False)

A downside of natural splines is that they don’t provide local control. Changing only a single control
point potentially influences the whole curve.

[7]: plot_natural([
(0, 0),
(0.5, 0),
(2, -1),
(3, 2),
(1, 3),
(-2, 2),

])
(continues on next page)

30

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/euclidean/natural-properties.ipynb
helper.py

(continued from previous page)

plot_natural([
(0, 0),
(0.5, 0),
(2, -0.5),
(3, 2),
(1, 3),
(-2, 2),

])

By default, natural end conditions (page 35) are used, but alternatively, the end tangents can be clamped
to given values.

[8]: plot_natural(vertices, endconditions='natural')
plot_natural(vertices, endconditions=[[0, 0], 'natural'])
plot_natural(vertices, endconditions=[[1, -1], 'natural'])
plot_natural(vertices, endconditions=[[2, -2], 'natural'])

[9]: plot_natural(vertices, endconditions='closed')

31

[10]: plot_natural(vertices, endconditions='closed', alpha=0.5)

. doc/euclidean/natural-properties.ipynb ends here.

The following section was generated from doc/euclidean/natural-uniform.ipynb .

Uniform Natural Splines

For deriving natural splines, we first look at the uniform case, which means that the parameter interval
in each segment is chosen to be 1.

The more general case with arbitrary parameter intervals is derived in a separate notebook about non-
uniform natural splines (page 36).

[1]: import sympy as sp
sp.init_printing(order='grevlex')

We import a helper class for named SymPy expressions from utility.py:

[2]: from utility import NamedExpression

[3]: t = sp.symbols('t')

In the beginning, we are looking at two neighboring segments: The fourth segment, from x3 to x4,
defined by the polynomial p3, and the fifth segment, from x4 to x5, defined by the polynomial p4. In

32

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/euclidean/natural-properties.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/euclidean/natural-uniform.ipynb
utility.py

both cases, we use 0 ≤ t ≤ 1.

[4]: a3, a4, b3, b4, c3, c4, d3, d4 = sp.symbols('a:dbm3:5')

We are using the monomial basis (page 2) to define the two polynomials . . .

[5]: b_monomial = sp.Matrix([t**3, t**2, t, 1]).T

[6]: p3 = NamedExpression('pbm3', d3 * t**3 + c3 * t**2 + b3 * t + a3)
p4 = NamedExpression('pbm4', d4 * t**3 + c4 * t**2 + b4 * t + a4)
display(p3, p4)

p3 = d3t3 + c3t2 + b3t + a3

p4 = d4t3 + c4t2 + b4t + a4

. . . and we calculate their first derivatives:

[7]: pd3 = p3.diff(t)
pd4 = p4.diff(t)
display(pd3, pd4)

d
dt

p3 = 3d3t2 + 2c3t + b3

d
dt

p4 = 3d4t2 + 2c4t + b4

From this, we obtain 8 equations containing the 8 yet unknown coefficients.

[8]: equations = [
p3.evaluated_at(t, 0).with_name('xbm3'),
p3.evaluated_at(t, 1).with_name('xbm4'),
p4.evaluated_at(t, 0).with_name('xbm4'),
p4.evaluated_at(t, 1).with_name('xbm5'),
pd3.evaluated_at(t, 0).with_name('xbmdot3'),
pd3.evaluated_at(t, 1).with_name('xbmdot4'),
pd4.evaluated_at(t, 0).with_name('xbmdot4'),
pd4.evaluated_at(t, 1).with_name('xbmdot5'),

]
display(*equations)
x3 = a3

x4 = a3 + b3 + c3 + d3
x4 = a4

x5 = a4 + b4 + c4 + d4

ẋ3 = b3

ẋ4 = b3 + 2c3 + 3d3

ẋ4 = b4

ẋ5 = b4 + 2c4 + 3d4

We can solve the system of equations to get an expression for each coefficient:

[9]: coefficients = sp.solve(equations, [a3, a4, b3, b4, c3, c4, d3, d4])
for c, e in coefficients.items():

display(NamedExpression(c, e))
a3 = x3

33

b3 = ẋ3

c3 = −3x3 + 3x4 − 2ẋ3 − ẋ4

d3 = 2x3 − 2x4 + ẋ3 + ẋ4
a4 = x4

b4 = ẋ4

c4 = −3x4 + 3x5 − 2ẋ4 − ẋ5

d4 = 2x4 − 2x5 + ẋ4 + ẋ5

So far, this is the same as we have done in the notebook about uniform Hermite splines (page 16). In fact,
the above constants are the same as in MH!

An additional constraint for natural splines is that the second derivatives are continuous, so let’s
calculate those derivatives . . .

[10]: pdd3 = pd3.diff(t)
pdd4 = pd4.diff(t)
display(pdd3, pdd4)

d2

dt2 p3 = 6d3t + 2c3

d2

dt2 p4 = 6d4t + 2c4

. . . and set them to be equal at the segment border:

[11]: sp.Eq(pdd3.expr.subs(t, 1), pdd4.expr.subs(t, 0))

[11]: 2c3 + 6d3 = 2c4

Inserting the equations from above leads to this equation:

[12]: _.subs(coefficients).simplify()

[12]: 3x3 = 3x5 − ẋ3 − 4ẋ4 − ẋ5

We can generalize this expression by renaming index 4 to i:

ẋi−1 + 4ẋi + ẋi+1 = 3(xi+1 − xi−1)

This can be used for each segment – except for the very first and last one – yielding a matrix with N
columns and N − 2 rows:



1 4 1 · · · 0

1 4 1
...

.
... 1 4 1
0 · · · 1 4 1




ẋ0
ẋ1
...

ẋN−2
ẋN−1

 =


3(x2 − x0)
3(x3 − x1)

...
3(xN−2 − xN−4)
3(xN−1 − xN−3)



34

End Conditions

We need a first and last row for this matrix to be able to fully define a natural spline. The following
subsections show a selection of a few end conditions which can be used to obtain the missing rows
of the matrix. End conditions (except “closed”) can be mixed, e.g. “clamped” at the beginning and
“natural” at the end. The Python class splines.Natural (page 161) uses “natural” end conditions by
default.

Natural

Natural end conditions are commonly used for natural splines, which is probably why they are named
that way.

There is a separate notebook about “natural” end conditions (page 101), from which we can get the uniform
case by setting ∆i = 1:

2ẋ0 + ẋ1 = 3(x1 − x0)

ẋN−2 + 2ẋN−1 = 3(xN−1 − xN−2)

Adding this to the matrix from above leads to a full N × N matrix:



2 1 · · · 0

1 4 1
...

1 4 1
.
1 4 1

... 1 4 1
0 · · · 1 2




ẋ0
ẋ1
...

ẋN−2
ẋN−1

 =



3(x1 − x0)
3(x2 − x0)
3(x3 − x1)

...
3(xN−2 − xN−4)
3(xN−1 − xN−3)
3(xN−1 − xN−2)



Clamped

We can simply provide arbitrarily chosen values for the end tangents. This is called clamped end
conditions.

ẋ0 = Dbegin

ẋN−1 = Dend

This leads to a very simple first and last line:



1 · · · 0

1 4 1
...

1 4 1
.
1 4 1

... 1 4 1
0 · · · 1




ẋ0
ẋ1
...

ẋN−2
ẋN−1

 =



Dbegin
3(x2 − x0)
3(x3 − x1)

...
3(xN−2 − xN−4)
3(xN−1 − xN−3)

Dend



35

Closed

We can close the spline by connecting xN−1 with x0. This can be realized by cyclically extending the
matrix in both directions:



4 1 · · · 0 1
1 4 1 0 0

1 4 1
...

.
... 1 4 1
0 0 1 4 1
1 0 · · · 1 4




ẋ0
ẋ1
...

ẋN−2
ẋN−1

 =



3(x1 − xN−1)
3(x2 − x0)
3(x3 − x1)

...
3(xN−2 − xN−4)
3(xN−1 − xN−3)

3(x0 − xN−2)



Solving the System of Equations

The matrices above are tridiagonal and can therefore be solved efficiently with a tridiagonal matrix
algorithm13. The class splines.Natural (page 161), however, is not very concerned about efficiency and
simply uses NumPy’s linalg.solve()14 function to solve the system of equations.
. doc/euclidean/natural-uniform.ipynb ends here.

The following section was generated from doc/euclidean/natural-non-uniform.ipynb .

Non-Uniform Natural Splines

The derivation is similar to the uniform case (page 32), but this time the parameter intervals can have
arbitrary values.

[1]: import sympy as sp
sp.init_printing(order='grevlex')

[2]: from utility import NamedExpression

[3]: t = sp.symbols('t')

Just like in the uniform case, we are considering two adjacent spline segments, but this time we must
allow arbitrary parameter values:

[4]: t3, t4, t5 = sp.symbols('t3:6')

[5]: b_monomial = sp.Matrix([t**3, t**2, t, 1]).T
b_monomial

[5]:
[
t3 t2 t 1

]
[6]: coefficients3 = sp.symbols('a:dbm3')[::-1]

coefficients4 = sp.symbols('a:dbm4')[::-1]

[7]: b_monomial.dot(coefficients3)

[7]: d3t3 + c3t2 + b3t + a3

13 https://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm
14 https://numpy.org/doc/stable/reference/generated/numpy.linalg.solve.html

36

https://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm
https://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm
https://numpy.org/doc/stable/reference/generated/numpy.linalg.solve.html
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/euclidean/natural-uniform.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/euclidean/natural-non-uniform.ipynb

[8]: p3 = NamedExpression(
'pbm3',
b_monomial.dot(coefficients3).subs(t, (t - t3)/(t4 - t3)))

p4 = NamedExpression(
'pbm4',
b_monomial.dot(coefficients4).subs(t, (t - t4)/(t5 - t4)))

display(p3, p4)

p3 =
d3 (t− t3)

3

(−t3 + t4)
3 +

c3 (t− t3)
2

(−t3 + t4)
2 +

b3 (t− t3)

−t3 + t4
+ a3

p4 =
d4 (t− t4)

3

(−t4 + t5)
3 +

c4 (t− t4)
2

(−t4 + t5)
2 +

b4 (t− t4)

−t4 + t5
+ a4

[9]: pd3 = p3.diff(t)
pd4 = p4.diff(t)
display(pd3, pd4)

d
dt

p3 =
3d3 (t− t3)

2

(−t3 + t4)
3 +

c3 (2t− 2t3)

(−t3 + t4)
2 +

b3

−t3 + t4

d
dt

p4 =
3d4 (t− t4)

2

(−t4 + t5)
3 +

c4 (2t− 2t4)

(−t4 + t5)
2 +

b4

−t4 + t5

[10]: equations = [
p3.evaluated_at(t, t3).with_name('xbm3'),
p3.evaluated_at(t, t4).with_name('xbm4'),
p4.evaluated_at(t, t4).with_name('xbm4'),
p4.evaluated_at(t, t5).with_name('xbm5'),
pd3.evaluated_at(t, t3).with_name('xbmdot3'),
pd3.evaluated_at(t, t4).with_name('xbmdot4'),
pd4.evaluated_at(t, t4).with_name('xbmdot4'),
pd4.evaluated_at(t, t5).with_name('xbmdot5'),

]

We introduce a few new symbols to simplify the display, but we keep calculating with ti:

[11]: deltas = {
t3: 0,
t4: sp.Symbol('Delta3'),
t5: sp.Symbol('Delta3') + sp.Symbol('Delta4'),

}

[12]: for e in equations:
display(e.subs(deltas))

x3 = a3

x4 = a3 + b3 + c3 + d3
x4 = a4

x5 = a4 + b4 + c4 + d4

ẋ3 =
b3

∆3

ẋ4 =
b3

∆3
+

2c3

∆3
+

3d3

∆3

37

ẋ4 =
b4

∆4

ẋ5 =
b4

∆4
+

2c4

∆4
+

3d4

∆4

[13]: coefficients = sp.solve(equations, coefficients3 + coefficients4)

[14]: for c, e in coefficients.items():
display(NamedExpression(c, e.subs(deltas)))

d3 = ∆3 ẋ3 + ∆3 ẋ4 + 2x3 − 2x4

c3 = −2∆3 ẋ3 − ∆3 ẋ4 − 3x3 + 3x4

b3 = ∆3 ẋ3
a3 = x3

d4 = −∆3 ẋ4 − ∆3 ẋ5 + ẋ4 (∆3 + ∆4) + ẋ5 (∆3 + ∆4) + 2x4 − 2x5

c4 = 2∆3 ẋ4 + ∆3 ẋ5 − 2ẋ4 (∆3 + ∆4)− ẋ5 (∆3 + ∆4)− 3x4 + 3x5

b4 = −∆3 ẋ4 + ẋ4 (∆3 + ∆4)

a4 = x4

[15]: pdd3 = pd3.diff(t)
pdd4 = pd4.diff(t)
display(pdd3, pdd4)

d2

dt2 p3 =
3d3 (2t− 2t3)

(−t3 + t4)
3 +

2c3

(−t3 + t4)
2

d2

dt2 p4 =
3d4 (2t− 2t4)

(−t4 + t5)
3 +

2c4

(−t4 + t5)
2

[16]: sp.Eq(pdd3.expr.subs(t, t4), pdd4.expr.subs(t, t4))

[16]: 3d3 (−2t3 + 2t4)

(−t3 + t4)
3 +

2c3

(−t3 + t4)
2 =

2c4

(−t4 + t5)
2

[17]: _.subs(coefficients).subs(deltas).simplify()

[17]: 2 (∆3 ẋ3 + 2∆3 ẋ4 + 3x3 − 3x4)

∆2
3

=
2 (−2∆4 ẋ4 − ∆4 ẋ5 − 3x4 + 3x5)

∆2
4

Like in the uniform case, we can generalize by renaming index 4 to i:

1
∆i−1

ẋi−1 +

(
2

∆i−1
+

2
∆i

)
ẋi +

1
∆i

ẋi+1 =
3(xi − xi−1)

∆i−1
2 +

3(xi+1 − xi)

∆i
2

We are not showing the full matrix here, because it would be quite a bit more complicated and less
helpful than in the uniform case.

38

End Conditions

Like in the uniform case (page 35), we can come up with a few end conditions in order to define the
missing matrix rows.

The Python class splines.Natural (page 161) uses “natural” end conditions by default.

“Natural” end conditions are derived in a separate notebook (page 101), yielding these expressions:

2∆0 ẋ0 + ∆0 ẋ1 = 3(x1 − x0)

∆N−2 ẋN−2 + 2∆N−2 ẋN−1 = 3(xN−1 − xN−2)

Other end conditions can be derived as shown in the notebook about uniform “natural” splines (page 35).
. doc/euclidean/natural-non-uniform.ipynb ends here.

1.5 Bézier Splines

Named after Pierre Bézier15, Bézier splines are defined by means of Bernstein polynomials16 (which
are named after Sergei Bernstein17). A popular method to evaluate Bézier splines at given parameter
values is de Casteljau’s algorithm (page 40). A very good online resource with many interactive examples
is A Primer on Bézier Curves: https://pomax.github.io/bezierinfo/.

A Python implementation is available in the class splines.Bernstein (page 160).

The following section was generated from doc/euclidean/bezier-properties.ipynb .

Properties of Bézier Splines

The terms Bézier spline and Bézier curve can mean two slightly different things:

1. A curve constructed from a single Bernstein polynomial of degree d, given a control polygon
consisting of a sequence of d + 1 vertices. The first and last vertex lies on the curve (at its start
and end, respectively), while the other vertices in general don’t (the curve approximates them).

2. A piecewise polynomial curve consisting of multiple segments, each of them constructed from
a separate Bernstein polynomial. The start and end points of neighboring control polygons
typically coincide, leading to C0 continuity. However, the overall control polygon can be chosen
in a way to achieve G1 or C1 (or even higher) continuity.

Bézier splines in the latter sense are well known from their common use in 2D vector graphics software,
where cubic (i.e. degree 3) curve segments are typically used. Each segment has four control points:
The start and end point of the segment (shared with the end and start of the previous and next
segment, respectively) as well as two additional points that control the shape of the curve segment.

[1]: import matplotlib.pyplot as plt
import numpy as np

[2]: import splines

As an example, we create control points for a Bézier spline consisting of four segments, having poly-
nomial degrees of 1, 2, 3 and 4.

15 https://en.wikipedia.org/wiki/Pierre_B%C3%A9zier
16 https://en.wikipedia.org/wiki/Bernstein_polynomial
17 https://en.wikipedia.org/wiki/Sergei_Bernstein

39

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/euclidean/natural-non-uniform.ipynb
https://en.wikipedia.org/wiki/Pierre_B%C3%A9zier
https://en.wikipedia.org/wiki/Bernstein_polynomial
https://en.wikipedia.org/wiki/Sergei_Bernstein
https://pomax.github.io/bezierinfo/
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/euclidean/bezier-properties.ipynb

[3]: control_points = [
[(0, 0), (1, 4)],
[(1, 4), (2, 2), (4, 4)],
[(4, 4), (6, 4), (5, 2), (6, 2)],
[(6, 2), (6, 0), (4, 0), (5, 1), (3, 1)],

]

We are using the splines.Bernstein (page 160) class to construct a Bézier splines from these control
points.

[4]: s = splines.Bernstein(control_points)

[5]: times = np.linspace(s.grid[0], s.grid[-1], 100)

[6]: fig, ax = plt.subplots()
for segment in control_points:

xy = np.transpose(segment)
ax.plot(*xy, '--')
ax.scatter(*xy, color='grey')

ax.plot(*s.evaluate(times).T, 'k.')
ax.axis('equal');

. doc/euclidean/bezier-properties.ipynb ends here.

The following section was generated from doc/euclidean/bezier-de-casteljau.ipynb .

De Casteljau’s Algorithm

There are several ways that lead to Bézier curves, one was already shown in the notebook about Hermite
curves (page 21) (but only for cubic curves). In this notebook, we will derive Bézier curves of arbitrary
polynomial degree utilizing De Casteljau’s algorithm18.

18 https://en.wikipedia.org/wiki/De_Casteljau’s_algorithm

40

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/euclidean/bezier-properties.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/euclidean/bezier-de-casteljau.ipynb
https://en.wikipedia.org/wiki/De_Casteljau's_algorithm

Preparations

Before we continue, here are are few preparations for the following calculations:

[1]: %config InlineBackend.print_figure_kwargs = {'bbox_inches': None}
import matplotlib.pyplot as plt
import numpy as np
import sympy as sp
sp.init_printing()

We import a few utilities and helpers from the files utility.py and helper.py.

[2]: from utility import NamedExpression, NamedMatrix
from helper import plot_basis

Let’s prepare a few symbols for later use . . .

[3]: t, x0, x1, x2, x3, x4 = sp.symbols('t, xbm:5')

. . . and a helper function for plotting:

[4]: def plot_curve(func, points, dots=30, ax=None):
if ax is None:

ax = plt.gca()
times = np.linspace(0, 1, dots)
ax.plot(*func(points, times).T, '.')
ax.plot(

*np.asarray(points).T,
color='lightgrey',
linestyle=':',
marker='x',
markeredgecolor='black',

)
ax.scatter(*np.asarray(points).T, marker='x', c='black')
ax.set_title(func.__name__ + ' Bézier curve')
ax.axis('equal')

We also need to prepare for the animations we will see below. This is using code from the file casteljau.
py:

[5]: from casteljau import create_animation
from IPython.display import display, HTML

def show_casteljau_animation(points, frames=30, interval=200):
ani = create_animation(points, frames=frames, interval=interval)
display({

'text/html': ani.to_jshtml(default_mode='reflect'),
'text/plain': 'Animations can only be shown in HTML output, sorry!',

}, raw=True)
plt.close() # avoid spurious figure display

41

utility.py
helper.py
casteljau.py
casteljau.py

Degree 1 (Linear)

After all those preparations, let’s start with the trivial case: A Bézier spline of degree 1 is just a
piecewise linear curve connecting all the control points. There are no “off-curve” control points that
could bend the curve segments.

Assuming that we have two control points, x0 and x1, we can set up a linear equation:

p0,1(t) = x0 + t(x1 − x0).

Another way to write the same thing it like this:

p0,1(t) = (1− t)x0 + tx1,

where in both cases t ∈ [0, 1]. Since we will be needing quite a few of those linear interpolations, let’s
create a helper function:

[6]: def lerp(one, two):
"""Linear interpolation.

The parameter *t* is expected to be between 0 and 1.

"""
return (1 - t) * one + t * two

Now we can define the equation in SymPy:

[7]: p01 = NamedExpression('pbm_0,1', lerp(x0, x1))
p01

[7]: p0,1 = tx1 + x0 (1− t)

[8]: b1 = [p01.expr.expand().coeff(x.name).factor() for x in (x0, x1)]
b1

[8]: [1− t, t]

Doesn’t look like much, but those are the Bernstein bases19 for degree 1. It doesn’t get much more
interesting if we plot them:

[9]: plot_basis(*b1)

19 https://en.wikipedia.org/wiki/Bernstein_polynomial

42

https://en.wikipedia.org/wiki/Bernstein_polynomial

If you want to convert this to coefficients for the monomial basis (page 2) [t, 1] instead of the Bernstein
basis functions, you can use this matrix:

[10]: M_B1 = NamedMatrix(
r'{M_\text{B}^{(1)}}',
sp.Matrix([[c.coeff(x) for x in (x0, x1)]

for c in p01.expr.as_poly(t).all_coeffs()]))
M_B1

[10]:
M(1)

B =

[
−1 1
1 0

]
Applying this matrix leads to the coefficients of the linear equation mentioned in the beginning of this
section (p0,1(t) = t(x1 − x0) + x0):

[11]: sp.MatMul(M_B1.expr, sp.Matrix([x0, x1]))

[11]:
[
−1 1
1 0

] [
x0
x1

]

[12]: _.doit()

[12]:
[
−x0 + x1

x0

]
In case you ever need that, here’s the inverse:

[13]: M_B1.I

[13]:
M(1)

B

−1
=

[
0 1
1 1

]
Anywho, let’s calculate points on the curve by using the Bernstein basis functions:

[14]: def linear(points, times):
"""Evaluate linear Bézier curve (given by two points) at given times."""
return np.column_stack(sp.lambdify(t, b1)(times)) @ points

43

[15]: points = [
(0, 0),
(1, 0.5),

]

[16]: plot_curve(linear, points)

[17]: show_casteljau_animation(points)

Animations can only be shown in HTML output, sorry!

I know, not very exciting. But it gets better!

Degree 2 (Quadratic)

Now we consider three control points, x0, x1 and x2. We use the linear interpolation of the first two
points from above . . .

[18]: p01

[18]: p0,1 = tx1 + x0 (1− t)

. . . and we do the same thing for the second and third point:

[19]: p12 = NamedExpression('pbm_1,2', lerp(x1, x2))
p12

[19]: p1,2 = tx2 + x1 (1− t)

Finally, we make another linear interpolation between those two results:

[20]: p02 = NamedExpression('pbm_0,2', lerp(p01.expr, p12.expr))
p02

[20]: p0,2 = t (tx2 + x1 (1− t)) + (1− t) (tx1 + x0 (1− t))

From this, we can get the Bernstein basis functions of degree 2:

44

[21]: b2 = [p02.expr.expand().coeff(x.name).factor() for x in (x0, x1, x2)]
b2

[21]:
[
(t− 1)2 , −2t (t− 1) , t2

]
[22]: plot_basis(*b2)

[23]: M_B2 = NamedMatrix(
r'{M_\text{B}^{(2)}}',
sp.Matrix([[c.coeff(x) for x in (x0, x1, x2)]

for c in p02.expr.as_poly(t).all_coeffs()]))
M_B2

[23]:
M(2)

B =

 1 −2 1
−2 2 0
1 0 0


[24]: M_B2.I

[24]:
M(2)

B

−1
=

0 0 1
0 1

2 1
1 1 1


[25]: def quadratic(points, times):

"""Evaluate quadratic Bézier curve (given by three points) at given times."""
return np.column_stack(sp.lambdify(t, b2)(times)) @ points

[26]: points = [
(0, 0),
(0.2, 0.5),
(1, -0.3),

]

[27]: plot_curve(quadratic, points)

45

[28]: show_casteljau_animation(points)

Animations can only be shown in HTML output, sorry!

Quadratic Tangent Vectors

For some more insight, let’s look at the first derivative of the curve (i.e. the tangent vector) . . .

[29]: v02 = p02.diff(t)

. . . at the beginning and the end of the curve:

[30]: v02.evaluated_at(t, 0)

[30]: d
dt

p0,2

∣∣∣∣
t=0

= −2x0 + 2x1

[31]: v02.evaluated_at(t, 1)

[31]: d
dt

p0,2

∣∣∣∣
t=1

= −2x1 + 2x2

This shows that the tangent vector at the beginning and end of the curve is parallel to the line from
x0 to x1 and from x1 to x2, respectively. The length of the tangent vectors is twice the length of those
lines.

You might have already seen that coming, but it turns out that the last line in de Casteljau’s algorithm
(p1,2(t)− p0,1(t) in our case) is exactly half of the tangent vector (at any given t ∈ [0, 1]).

[32]: assert (v02.expr - 2 * (p12.expr - p01.expr)).simplify() == 0

In case you are wondering, the factor 2 comes from the degree 2 of our quadratic curve.

46

Degree 3 (Cubic)

Let’s now consider four control points, x0, x1, x2 and x3.

By now, the pattern should be clear: We take the result from the first three points from above and
linearly interpolate it with the result for the three points x1, x2 and x3.

Combination of x2 and x3:

[33]: p23 = NamedExpression('pbm_2,3', lerp(x2, x3))
p23

[33]: p2,3 = tx3 + x2 (1− t)

Combination of x1, x2 and x3:

[34]: p13 = NamedExpression('pbm_1,3', lerp(p12.expr, p23.expr))
p13

[34]: p1,3 = t (tx3 + x2 (1− t)) + (1− t) (tx2 + x1 (1− t))

Combination of x0, x1, x2 and x3:

[35]: p03 = NamedExpression('pbm_0,3', lerp(p02.expr, p13.expr))
p03

[35]: p0,3 = t (t (tx3 + x2 (1− t)) + (1− t) (tx2 + x1 (1− t))) +

(1− t) (t (tx2 + x1 (1− t)) + (1− t) (tx1 + x0 (1− t)))

This leads to the cubic Bernstein bases:

[36]: b3 = [p03.expr.expand().coeff(x.name).factor() for x in (x0, x1, x2, x3)]
b3

[36]:
[
− (t− 1)3 , 3t (t− 1)2 , −3t2 (t− 1) , t3

]
Those are of course the same Bernstein bases as we found in the notebook about Hermite splines (page 21).

[37]: plot_basis(*b3)

47

[38]: M_B3 = NamedMatrix(
r'{M_\text{B}^{(3)}}',
sp.Matrix([[c.coeff(x) for x in (x0, x1, x2, x3)]

for c in p03.expr.as_poly(t).all_coeffs()]))
M_B3

[38]:

M(3)
B =


−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0


[39]: M_B3.I

[39]:

M(3)
B

−1
=


0 0 0 1
0 0 1

3 1
0 1

3
2
3 1

1 1 1 1


[40]: def cubic(points, times):

"""Evaluate cubic Bézier curve (given by four points) at given times."""
return np.column_stack(sp.lambdify(t, b3)(times)) @ points

[41]: points = [
(0, 0.3),
(0.2, 0.5),
(0.1, 0),
(1, 0.2),

]

[42]: plot_curve(cubic, points)

[43]: show_casteljau_animation(points)

Animations can only be shown in HTML output, sorry!

48

Cubic Tangent Vectors

As before, let’s look at the derivative (i.e. the tangent vector) of the curve . . .

[44]: v03 = p03.diff(t)

. . . at the beginning and the end of the curve:

[45]: v03.evaluated_at(t, 0)

[45]: d
dt

p0,3

∣∣∣∣
t=0

= −3x0 + 3x1

[46]: v03.evaluated_at(t, 1)

[46]: d
dt

p0,3

∣∣∣∣
t=1

= −3x2 + 3x3

This shows that the tangent vector at the beginning and end of the curve is parallel to the line from
x0 to x1 and from x2 to x3, respectively. The length of the tangent vectors is three times the length of
those lines. This also means that if the begin and end positions x0 and x3 as well as the corresponding
tangent vectors ẋ0 and ẋ3 are given, it’s easy to calculate the two missing control points:

x1 = x0 +
ẋ0

3

x2 = x3 −
ẋ3

3

This can be used to turn uniform Hermite splines into Bézier splines (page 21) and to construct uniform
Catmull–Rom splines using Bézier segments (page 70).

We can now also see that the last linear segment in de Casteljau’s algorithm (p1,3(t)− p0,2(t) in this
case) is exactly a third of the tangent vector (at any given t ∈ [0, 1]):

[47]: assert (v03.expr - 3 * (p13.expr - p02.expr)).simplify() == 0

Again, the factor 3 comes from the degree 3 of our curve.

Cubic Bézier to Hermite Segments

We now know the tangent vectors at the beginning and the end of the curve, and obviously we know
the values of the curve at the beginning and the end:

[48]: p03.evaluated_at(t, 0)

[48]: p0,3

∣∣∣
t=0

= x0

[49]: p03.evaluated_at(t, 1)

[49]: p0,3

∣∣∣
t=1

= x3

With these four pieces of information, we can find a transformation from the four Bézier control points
to the two control points and two tangent vectors of a Hermite spline segment:

49

[50]: M_BtoH = NamedMatrix(
r'{M_\text{B\toH}}',
sp.Matrix([[expr.coeff(cv) for cv in [x0, x1, x2, x3]]

for expr in [
x0,
x3,
v03.evaluated_at(t, 0).expr,
v03.evaluated_at(t, 1).expr]]))

M_BtoH

[50]:

MB→H =


1 0 0 0
0 0 0 1
−3 3 0 0
0 0 −3 3


And we can simply invert this if we want to go in the other direction, from Hermite to Bézier:

[51]: M_BtoH.I.pull_out(sp.S.One / 3)

[51]:

MB→H
−1 =

1
3


3 0 0 0
3 0 1 0
0 3 0 −1
0 3 0 0


Of course, those are the same matrices as shown in the notebook about uniform cubic Hermite splines
(page 21).

Degree 4 (Quartic)

By now you know the drill, we consider five control points, x0, x1, x2, x3 and x4, which lead to more
linear interpolations:

[52]: p34 = NamedExpression('pbm_3,4', lerp(x3, x4))
p24 = NamedExpression('pbm_2,4', lerp(p23.expr, p34.expr))
p14 = NamedExpression('pbm_1,4', lerp(p13.expr, p24.expr))
p04 = NamedExpression('pbm_0,4', lerp(p03.expr, p14.expr))
p04

[52]: p0,4 =

t (t (t (tx4 + x3 (1− t)) + (1− t) (tx3 + x2 (1− t))) + (1− t) (t (tx3 + x2 (1− t)) + (1− t) (tx2 + x1 (1− t))))+
(1− t) (t (t (tx3 + x2 (1− t)) + (1− t) (tx2 + x1 (1− t))) + (1− t) (t (tx2 + x1 (1− t)) + (1− t) (tx1 + x0 (1− t))))

Kinda long, but anyway, let’s try to extract the Bernstein bases:

[53]: b4 = [p04.expr.expand().coeff(x.name).factor() for x in (x0, x1, x2, x3, x4)]
b4

[53]:
[
(t− 1)4 , −4t (t− 1)3 , 6t2 (t− 1)2 , −4t3 (t− 1) , t4

]
[54]: plot_basis(*b4)

50

[55]: M_B4 = NamedMatrix(
'{M_B^{(4)}}',
sp.Matrix([[c.coeff(x) for x in (x0, x1, x2, x3, x4)]

for c in p04.expr.as_poly(t).all_coeffs()]))
M_B4

[55]:

M(4)
B =


1 −4 6 −4 1
−4 12 −12 4 0
6 −12 6 0 0
−4 4 0 0 0
1 0 0 0 0


[56]: M_B4.I

[56]:

M(4)
B

−1
=


0 0 0 0 1
0 0 0 1

4 1
0 0 1

6
1
2 1

0 1
4

1
2

3
4 1

1 1 1 1 1


[57]: def quartic(points, times):

"""Evaluate quartic Bézier curve (given by five points) at given times."""
return np.column_stack(sp.lambdify(t, b4)(times)) @ points

[58]: points = [
(0, 0),
(0.5, 0),
(0.7, 1),
(1, 1.5),
(-1, 1),

]

[59]: plot_curve(quartic, points)

51

[60]: show_casteljau_animation(points)

Animations can only be shown in HTML output, sorry!

Quartic Tangent Vectors

For completeness’ sake, let’s look at the derivative (i.e. the tangent vector) of the curve . . .

[61]: v04 = p04.diff(t)

. . . at the beginning and the end of the curve:

[62]: v04.evaluated_at(t, 0)

[62]: d
dt

p0,4

∣∣∣∣
t=0

= −4x0 + 4x1

[63]: v04.evaluated_at(t, 1)

[63]: d
dt

p0,4

∣∣∣∣
t=1

= −4x3 + 4x4

By now it shouldn’t be surprising that the tangent vector at the beginning and end of the curve is
parallel to the line from x0 to x1 and from x3 to x4, respectively. The length of the tangent vectors is
four times the length of those lines. The last line in de Casteljau’s algorithm (p1,4(t)− p0,3(t) in this
case) is exactly a fourth of the tangent vector (at any given t ∈ [0, 1]):

[64]: assert (v04.expr - 4 * (p14.expr - p03.expr)).simplify() == 0

Again, the factor 4 comes from the degree 4 of our curve.

52

Arbitrary Degree

We could go on doing this for higher and higher degrees, but this would get more and more annoying.
Luckily, there is a closed formula available to calculate Bernstein polynomials for an arbitrary degree
n (using the binomial coefficient20 (n

i) =
n!

i!(n−i)!):

bi,n(x) =
(

n
i

)
xi (1− x)n−i , i = 0, . . . , n.

This is used in the Python class splines.Bernstein (page 160).

[65]: show_casteljau_animation([
(0, 0),
(-1, 1),
(-0.5, 2),
(1, 2.5),
(2, 2),
(2, 1.5),
(0.5, 0.5),
(1, -0.5),

])

Animations can only be shown in HTML output, sorry!
. doc/euclidean/bezier-de-casteljau.ipynb ends here.

The following section was generated from doc/euclidean/bezier-non-uniform.ipynb .

Non-Uniform Bézier Splines

Very commonly, Bézier splines are used with a parameter range of 0 ≤ t ≤ 1, which has also been
used to derive the basis polynomials and basis matrices in the notebook about De Casteljau’s algorithm
(page 40).

The parameter range can be re-scaled to any desired parameter range, but since the shape of a Bézier
curve is fully defined by its control polygon, this will not change the shape of the curve, but only its
speed, and therefore its tangent vectors.

To derive equations for non-uniform tangent vectors, let us quickly re-implement De Casteljau’s algo-
rithm:

[1]: def lerp(one, two, t):
return (1 - t) * one + t * two

[2]: def de_casteljau(points, t):
while len(points) > 1:

points = [lerp(a, b, t) for a, b in zip(points, points[1:])]
return points[0]

[3]: import sympy as sp
sp.init_printing()

We’ll also use our trusty SymPy tools from utility.py:

[4]: from utility import NamedExpression

20 https://en.wikipedia.org/wiki/Binomial_coefficient

53

https://en.wikipedia.org/wiki/Binomial_coefficient
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/euclidean/bezier-de-casteljau.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/euclidean/bezier-non-uniform.ipynb
utility.py

In this notebook we are only looking at cubic Bézier splines. More specifically, we are looking at the
fifth spline segment, from x4 to x5 within a parameter range from t4 to t5, but later we can easily
generalize this.

[5]: control_points = sp.symbols('xbm4 xtildebm4^(+) xtildebm5^(-) xbm5')
control_points

[5]:
(

x4, x̃(+)
4 , x̃(−)5 , x5

)
[6]: t, t4, t5 = sp.symbols('t t4 t5')

As before, we are using De Casteljau’s algorithm, but this time we are re-scaling the parameter range
using the transformation t→ t−ti

ti+1−ti
:

[7]: p4 = NamedExpression(
'pbm4',
de_casteljau(control_points, (t - t4) / (t5 - t4)))

Tangent Vectors

As always, the tangent vectors can be obtained by means of the first derivative:

[8]: pd4 = p4.diff(t)

[9]: pd4.evaluated_at(t, t4)

[9]: d
dt

p4

∣∣∣∣
t=t4

= − 3x4

−t4 + t5
+

3x̃(+)
4

−t4 + t5

This expression for the outgoing tangent vector at x4 can be generalized to

ẋ(+)
i =

3
(

x̃(+)
i − xi

)
∆i

,

where ∆i = ti+1 − ti.

Similarly, the incoming tangent vector at x5 . . .

[10]: pd4.evaluated_at(t, t5)

[10]: d
dt

p4

∣∣∣∣
t=t5

=
3x5

−t4 + t5
−

3x̃(−)5
−t4 + t5

. . . can be generalized to

ẋ(−)i =
3
(

xi − x̃(−)
i

)
∆i−1

.

This is similar to the uniform case (page 49), the tangent vectors are just divided by the parameter
interval.

54

Control Points From Tangent Vectors

If the tangent vectors are given in the first place (i.e. when a non-uniform Hermite spline (page 13) is
given), the cubic Bézier control points can be calculated like this:

x̃(+)
i = xi +

∆i ẋ
(+)
i

3

x̃(−)
i = xi −

∆i−1 ẋ(−)i
3

. doc/euclidean/bezier-non-uniform.ipynb ends here.

1.6 Catmull–Rom Splines

What is nowadays known as Catmull–Rom spline (named after Edwin Catmull21 and Raphael Rom22)
is a specific member of a whole family of splines introduced in [CR74]. That paper only describes
uniform splines, but their definition can be straightforwardly extended to the non-uniform case.

Contrary to popular belief, Overhauser splines (as presented in [Ove68]) are not the same!

A Python implementation of Catmull–Rom splines is available in the splines.CatmullRom (page 161)
class.

The following section was generated from doc/euclidean/catmull-rom-properties.ipynb .

Properties of Catmull–Rom Splines

[CR74] presents a whole class of splines with a whole range of properties. Here we only consider one
member of this class which is a cubic polynomial interpolating spline with C1 continuity and local
support. Nowadays, this specific case is typically simply referred to as Catmull–Rom spline.

This type of splines is very popular because they are very easy to use. Only a sequence of control
points has to be specified, the tangents are calculated automatically from the given points. Using
those tangents, the spline can be implemented using cubic Hermite splines (page 13). Alternatively,
spline values can be directly calculated with the Barry–Goldman algorithm (page 75).

To calculate the spline values between two control points, the preceding and the following control
points are needed as well. The tangent vector at any given control point can be calculated from
this control point, its predecessor and its successor. Since Catmull–Rom splines are C1 continuous,
incoming and outgoing tangent vectors are equal.

The following examples use the Python class splines.CatmullRom (page 161) to create both uniform and
non-uniform splines. Only closed splines are shown, other end conditions (page 101) can also be used,
but they are not specific to this type of spline.

[1]: import matplotlib.pyplot as plt
import numpy as np
np.set_printoptions(precision=4)

Apart from the splines (page 159) module . . .

[2]: import splines

. . . we also import a few helper functions from helper.py:
21 https://en.wikipedia.org/wiki/Edwin_Catmull
22 https://en.wikipedia.org/wiki/Raphael_Rom

55

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/euclidean/bezier-non-uniform.ipynb
https://en.wikipedia.org/wiki/Edwin_Catmull
https://en.wikipedia.org/wiki/Raphael_Rom
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/euclidean/catmull-rom-properties.ipynb
helper.py

[3]: from helper import plot_spline_2d, plot_tangent_2d

Let’s choose a few points for an example:

[4]: points1 = [
(-1, -0.5),
(0, 2.3),
(1, 1),
(4, 1.3),
(3.8, -0.2),
(2.5, 0.1),

]

Without specifying any time values, we get a uniform spline:

[5]: s1 = splines.CatmullRom(points1, endconditions='closed')

[6]: fig, ax = plt.subplots()
plot_spline_2d(s1, ax=ax)

Tangent Vectors

In the uniform case, the tangent vectors at any given control point are parallel to the line connecting
the preceding point and the following point. The tangent vector has the same orientation as that line
but only half its length. In other (more mathematical) words:

ẋi =
xi+1 − xi−1

2

This is illustrated for two control points in the following plot:

[7]: for idx, color in zip([2, 5], ['purple', 'hotpink']):
plot_tangent_2d(

s1.evaluate(s1.grid[idx], 1),
s1.evaluate(s1.grid[idx]), color=color, ax=ax)

ax.plot(
*s1.evaluate([s1.grid[idx - 1], s1.grid[idx + 1]]).T,
'--', color=color, linewidth=2)

fig

56

[7]:

We can see here that each tangent vector is parallel to and has half the length of the line connecting
the preceding and the following vertex, just as promised.

However, this will not be true anymore if we are using non-uniform time instances:

[8]: times2 = 0, 1, 2.2, 3, 4, 4.5, 6

[9]: s2 = splines.CatmullRom(points1, grid=times2, endconditions='closed')

[10]: plot_spline_2d(s2, ax=ax)
for idx, color in zip([2, 5], ['green', 'crimson']):

plot_tangent_2d(
s2.evaluate(s2.grid[idx], 1),
s2.evaluate(s2.grid[idx]), color=color, ax=ax)

fig

[10]:

In the non-uniform case, the equation for the tangent vector gets quite a bit more complicated:

ẋi =
(ti+1 − ti)

2(xi − xi−1) + (ti − ti−1)
2(xi+1 − xi)

(ti+1 − ti)(ti − ti−1)(ti+1 − ti−1)

The derivation of this equation is shown in a separate notebook (page 72).

Equivalently, this can be written as:

57

ẋi =
(ti+1 − ti)(xi − xi−1)

(ti − ti−1)(ti+1 − ti−1)
+

(ti − ti−1)(xi+1 − xi)

(ti+1 − ti)(ti+1 − ti−1)

Also equivalently, with vi =
xi+1−xi
ti+1−ti

, it can be written as:

ẋi =
(ti+1 − ti)vi−1 + (ti − ti−1)vi

(ti+1 − ti−1)

Some sources provide a simpler equation which is different from the tangent vector of a Catmull–Rom
spline (except in the uniform case):

ẋi
?
=

vi−1 + vi
2

=
1
2

(
xi − xi−1

ti − ti−1
+

xi+1 − xi
ti+1 − ti

)
There are even sources (e.g. Wikipedia23) which show yet a simpler equation, which has even less to
do with Catmull–Rom splines (except in the uniform case):

ẋi
?
=

xi+1 − xi−1

ti+1 − ti−1

Cusps and Self-Intersections

Uniform parametrization typically works very well if the (Euclidean) distances between consecutive
vertices are all similar. However, if the distances are very different, the shape of the spline often turns
out to be unexpected. Most notably, in extreme cases there might be even cusps or self-intersections
within a spline segment.

[11]: def plot_catmull_rom(*args, **kwargs):
plot_spline_2d(splines.CatmullRom(*args, endconditions='closed', **kwargs))

[12]: points3 = [
(0, 0),
(0, 0.5),
(1.5, 1.5),
(1.6, 1.5),
(3, 0.2),
(3, 0),

]

[13]: plot_catmull_rom(points3)

23 https://en.wikipedia.org/wiki/Cubic_Hermite_spline#Catmull%E2%80%93Rom_spline

58

https://en.wikipedia.org/wiki/Cubic_Hermite_spline#Catmull%E2%80%93Rom_spline

We can try to compensate this by manually selecting some non-uniform time instances:

[14]: times3 = 0, 0.2, 0.9, 1, 3, 3.3, 4.5

[15]: plot_catmull_rom(points3, times3)

Time values can be chosen by trial and error, but there are also ways to choose the time values auto-
matically, as shown in the following sections.

Chordal Parameterization

One way to go about this is to measure the (Euclidean) distances between consecutive vertices (i.e. the
“chordal lengths”) and simply use those distances as time intervals:

[16]: distances = np.linalg.norm(np.diff(points3 + points3[:1], axis=0), axis=1)
distances

[16]: array([0.5 , 1.8028, 0.1 , 1.9105, 0.2 , 3.])

[17]: times4 = np.concatenate([[0], np.cumsum(distances)])
times4

[17]: array([0. , 0.5 , 2.3028, 2.4028, 4.3133, 4.5133, 7.5133])

59

[18]: plot_catmull_rom(points3, times4)

This makes the speed along the spline nearly constant, but the distance between the curve and its
longer chords can become quite huge.

Centripetal Parameterization

As a variation of the previous method, the square roots of the chordal lengths can be used to define
the time intervals.

[19]: times5 = np.concatenate([[0], np.cumsum(np.sqrt(distances))])
times5

[19]: array([0. , 0.7071, 2.0498, 2.366 , 3.7482, 4.1954, 5.9275])

[20]: plot_catmull_rom(points3, times5)

The curve takes its course much closer to the chords, but its speed is obviously far from constant.

Centripetal parameterization has the very nice property that it guarantees no cusps and no self-
intersections, as shown by [YSK11]. The curve is also guaranteed to never “move away” from the
successive vertex:

When centripetal parameterization is used with Catmull–Rom splines to define a path
curve, the direction of motion for the object following this path will always be towards the

60

next key-frame position.

—[YSK11], Section 7.2: “Path Curves”

Parameterized Parameterization

It turns out that the previous two parameterization schemes are just two special cases of a more general
scheme for obtaining time intervals between control points:

ti+1 = ti + |xi+1 − xi|α, with 0 ≤ α ≤ 1.

In the Python class splines.CatmullRom (page 161), the parameter alpha can be specified.

[21]: def plot_alpha(alpha, label):
s = splines.CatmullRom(points3, alpha=alpha, endconditions='closed')
plot_spline_2d(s, label=label)

[22]: plot_alpha(0, r'$\alpha = 0$ (uniform)')
plot_alpha(0.5, r'$\alpha = 0.5$ (centripetal)')
plot_alpha(0.75, r'$\alpha = 0.75$')
plot_alpha(1, r'$\alpha = 1$ (chordal)')
plt.legend(loc='center', numpoints=3);

As can be seen here (and as [YSK11] shows to be generally true), the uniform curve is farthest away
from short chords and closest to long chords. The chordal curve behaves contrarily: closest to short
chords and awkwardly far from long chords. The centripetal curve is closer to the uniform curve for
long chords and closer to the chordal curve for short chords, providing a very good compromise.

Any value between 0 and 1 can be chosen for α, but α = 1
2 (i.e. centripetal parameterization) stands

out because it is the only one of them that guarantees no cusps and self-intersections:

In this paper we prove that, for cubic Catmull–Rom curves, centripetal parameterization is
the only parameterization in this family that guarantees that the curves do not form cusps
or self-intersections within curve segments.

—[YSK11], abstract

[. . .] we mathematically prove that centripetal parameterization of Catmull–Rom curves
guarantees that the curve segments cannot form cusps or local self-intersections, while
such undesired features can be formed with all other possible parameterizations within
this class.

61

—[YSK11], Section 1: “Introduction”

Cusps and self-intersections are very common with Catmull–Rom curves for most param-
eterization choices. In fact, as we will show here, the only parameterization choice that
guarantees no cusps and self-intersections within curve segments is centripetal parameter-
ization.

—[YSK11], Section 3: “Cusps and Self-Intersections”
. doc/euclidean/catmull-rom-properties.ipynb ends here.

The following section was generated from doc/euclidean/catmull-rom-uniform.ipynb .

Uniform Catmull-Rom Splines

In [CR74], a class of splines is presented which can be, in its most generic form, described mathemati-
cally with what is referred to as equation (1):

F(s) = ∑ xi(s)wi(s)
∑ wi(s)

,

where the part wi(s)/ ∑ wi(s) is called blending functions.

Since the blending functions presented above are, as of now, completely arbitrary we im-
pose some constraints in order to make them easier to use. We shall deal only with blending
functions that are zero outside of some given interval. Also we require that ∑ wi(s) does
not vanish for any s. We shall normalize wi(s) so that ∑ wi(s) = 1 for all s.

—[CR74], section 3, “Blending Functions”

The components of the equation are further constrained to produce a interpolating function:

Consider the following case: Let xi(s) be any function interpolating the points pi through
pi+k and let wi(s) be zero outside (si−1, si+k+1). The function F(s) defined in equation (1)
will thus be an interpolating function. Intuitively, this says that if all of the functions that
have an effect at a point, pass through the point, then the average of the functions will pass
through the point.

—[CR74], section 2: “The Model”

Typo Alert

The typo “pi through si+k” has been fixed in the quote above.

A polynomial of degree k that pass[e]s through k + 1 points will be used as x(s). In general
it will not pass through the other points. If the width of the interval in which wi(s) is non
zero is less than or equal to k + 2 then xi(s) will not affect F(s) outside the interpolation
interval. This means that F(s) will be an interpolating function. On the other hand if the
width of wi(s) is greater than k + 2 then xi(s) will have an effect on the curve outside the
interpolation interval. F(s) will then be an approximating function.

—[CR74], section 2: “The Model”

After limiting the scope of the paper to interpolating splines, it is further reduced to uniform splines:

[. . .] in the parametric space we can, without loss of generality, place sj = j.

—[CR74], section 2: “The Model”

Whether or not generality is lost, this means that the rest of the paper doesn’t give any hints how
to construct non-uniform splines. For those who are interested anyway, we show how to do that in
the notebook about non-uniform Catmull–Rom splines (page 70) and once again in the notebook about the
Barry–Goldman algorithm (page 75).

62

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/euclidean/catmull-rom-properties.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/euclidean/catmull-rom-uniform.ipynb

After the aforementioned constraints and the definition of the term cardinal function . . .

Cardinal function: a function that is 1 at some knot, 0 at all other knots and can be anything
in between the other knots. It satisfies Fi(sj) = δij.

—[CR74], section 1: “Introduction”

. . . the gratuitously generic equation (1) is made a bit more concrete:

If in equation (1) we assume xi(s) to be polynomials of degree k then this equation can be
reduced to a much simpler form:

F(s) = ∑
j

pjCjk(s)

where the Cjk(s) are cardinal blending functions and j is the knot to which the cardinal
function and the point belong and each Cjk(s) is a shifted version of C0,k(s). C0,k(s) is a
function of both the degree k of the polynomials and the blending functions w(s):

C0,k(s) =
k

∑
i=0

[i

∏
j=i−k

j 6=0

(
s
j
+ 1
)]

w(s + i)

In essence we see that for a polynomial case our cardinal functions are a blend of Lagrange
polynomials. When calculating C0,k(s), w(s) should be centered about k

2 .

—[CR74], section 4: “Calculating Cardinal Functions”

This looks like something we can work with, even though the blending function w(s) is still not
defined.

[1]: import sympy as sp

We use t instead of s:

[2]: t = sp.symbols('t')

[3]: i, j, k = sp.symbols('i j k', integer=True)

[4]: w = sp.Function('w')

[5]: C0k = sp.Sum(
sp.Product(

sp.Piecewise((1, sp.Eq(j, 0)), ((t / j) + 1, True)),
(j, i - k, i)) * w(t + i),

(i, 0, k))
C0k

[5]: k

∑
i=0

w(i + t)
i

∏
j=i−k

{
1 for j = 0
1 + t

j otherwise

63

Blending Functions

[CR74] leaves the choice of blending function to the reader. It shows two plots (figure 1 and figure
3) for a custom blending function stitched together from two Bézier curves, but it doesn’t show the
cardinal function nor an actual spline created from it.

The only other concrete suggestion is to use B-spline basis functions as blending functions. A quadratic
B-spline basis function is shown in figure 2 and both cardinal functions and example curves are shown
that utilize both quadratic and cubic B-spline basis functions (figures 4 through 7). No mathematical
description of B-spline basis functions is given, instead the paper refers to [GR74]. That paper provides
a pair of equations (3.1 and 3.2) that can be used to recursively construct B-spline basis functions.
Simplified to the uniform case, this leads to the base case (degree 0) . . .

[6]: B0 = sp.Piecewise((0, t < i), (1, t < i + 1), (0, True))
B0

[6]:


0 for i > t
1 for t < i + 1
0 otherwise

. . . which can be used to obtain the linear (degree 1) basis functions:

[7]: B1 = (t - i) * B0 + (i + 2 - t) * B0.subs(i, i + 1)

We can use one of them (where i = 0) as blending function:

[8]: w1 = B1.subs(i, 0)

With some helper functions from helper.py we can plot this.

[9]: from helper import plot_sympy, grid_lines

[10]: plot_sympy(w1, (t, -0.2, 2.2))
grid_lines([0, 1, 2], [0, 1])

The quadratic (degree 2) basis functions can be obtained like this:

[11]: B2 = (t - i) / 2 * B1 + (i + 3 - t) / 2 * B1.subs(i, i + 1)

For our further calculations, we use the function with i = −1 as blending function:

64

helper.py

[12]: w2 = B2.subs(i, -1)

[13]: plot_sympy(w2, (t, -1.2, 2.2))
grid_lines([-1, 0, 1, 2], [0, 1])

This should be the same function as shown in figure 2 of [CR74].

Cardinal Functions

The first example curve in the paper (figure 5) is a cubic curve, constructed using a cardinal function
with k = 1 (i.e. using linear Lagrange interpolation) and a quadratic B-spline basis function (as shown
above) as blending function.

With the information so far, we can construct the cardinal function C0,1(t), using our quadratic B-spline
blending function w2 (which is, as required, centered about k

2):

[14]: C01 = C0k.subs(k, 1).replace(w, lambda x: w2.subs(t, x)).doit().simplify()
C01

[14]:


0 for t < −2
(t+1)(t+2)2

2 for t < −1

− 3t3

2 −
5t2

2 + 1 for t < 0
3t3

2 −
5t2

2 + 1 for t < 1
(1−t)(t−2)2

2 for t < 2
0 otherwise

[15]: plot_sympy(C01, (t, -2.2, 2.2))
grid_lines(range(-2, 3), [0, 1])

65

This should be the same function as shown in figure 4 of [CR74].

The paper does not show that, but we can also try to flip the respective degrees of Lagrange interpola-
tion and B-spline blending. In other words, we can set k = 2 to construct the cardinal function C0,2(t),
this time using the linear B-spline blending function w1 (which is also centered about k

2) leading to a
total degree of 3:

[16]: C02 = C0k.subs(k, 2).replace(w, lambda x: w1.subs(t, x)).doit().simplify()

And as it turns out, this is exactly the same thing!

[17]: assert C01 == C02

By the way, we come to the same conclusion in our notebook about the Barry–Goldman algorithm (page 75),
which means that this is also true in the non-uniform case.

Many authors nowadays, when using the term Catmull–Rom spline, mean the cubic spline created using
exactly this cardinal function.

As we have seen, this can be equivalently understood either as three linear interpolations (more ex-
actly: one interpolation and two extrapolations) followed by quadratic B-spline blending or as two
overlapping quadratic Lagrange interpolations followed by linear blending. The two equivalent ap-
proaches are illustrated by means of animations in the notebook about non-uniform Catmull–Rom splines
(page 74).

Example Plot

[18]: import matplotlib.pyplot as plt
import numpy as np

To quickly check how a spline segment would look like when using the cardinal function we just
derived, let’s define a few points . . .

[19]: vertices = np.array([
(-0.1, -0.5),
(0, 0),
(1, 0),
(0.5, 1),

])

66

. . . and plot F(t) (or F(s), as it has been called originally):

[20]: plt.scatter(*np.array([
sum([vertices[i] * C01.subs(t, s - i + 1) for i in range(4)])
for s in np.linspace(0, 1, 20)]).T)

plt.plot(*vertices.T, 'x:g');

For calculating more than one segment, and also for creating non-uniform Catmull–Rom splines, the
class splines.CatmullRom (page 161) can be used. For more plots, see the notebook about properties of
Catmull–Rom splines (page 55).

Basis Polynomials

The piecewise expression for the cardinal function is a bit unwieldy to work with, so let’s bring it into
a form we know how to deal with.

We are splitting the piecewise expression into four separate pieces, each one to be evaluated at 0 ≤
t ≤ 1. We are also reversing the order of the pieces, to match our intended control point order:

[21]: b_CR = sp.Matrix([
expr.subs(t, t + cond.args[1] - 1)
for expr, cond in C01.args[1:-1][::-1]]).T

b_CR.T

[21]: 
− t(t−1)2

2
3t3

2 −
5t2

2 + 1

− 3(t−1)3

2 − 5(t−1)2

2 + 1
t2(t−1)

2


[22]: from helper import plot_basis

[23]: plot_basis(*b_CR, labels=sp.symbols('xbm_i-1 xbm_i xbm_i+1 xbm_i+2'))

67

For the following sections, we are using a few tools from utility.py:

[24]: from utility import NamedExpression, NamedMatrix

Basis Matrix

[25]: b_monomial = sp.Matrix([t**3, t**2, t, 1]).T
M_CR = NamedMatrix(r'{M_\text{CR}}', 4, 4)
control_points = sp.Matrix(sp.symbols('xbm3:7'))

As usual, we look at the fifth polynomial segment (from x4 to x5):

[26]: p4 = NamedExpression('pbm4', b_monomial * M_CR.name * control_points)
p4

[26]:

p4 =
[
t3 t2 t 1

]
MCR


x3
x4
x5
x6


From the basis polynomials and the control points, we can already calculate p4(t) . . .

[27]: p4.expr = b_CR.dot(control_points).expand().collect(t)
p4

[27]: p4 = t3
(
− x3

2
+

3x4

2
− 3x5

2
+

x6

2

)
+ t2

(
x3 −

5x4

2
+ 2x5 −

x6

2

)
+ t
(
− x3

2
+

x5

2

)
+ x4

. . . and with a little bit of squinting, we can directly read off the coefficients of the basis matrix:

[28]: M_CR.expr = sp.Matrix([
[b.get(m, 0) for b in [

p4.expr.expand().coeff(cv).collect(t, evaluate=False)
for cv in control_points]]

for m in b_monomial])
M_CR.pull_out(sp.S.Half)

68

utility.py

[28]:

MCR =
1
2


−1 3 −3 1
2 −5 4 −1
−1 0 1 0
0 2 0 0


This matrix also appears in section 6 of [CR74].

In case you want to copy&paste it, here’s a plain text version:

[29]: print(_.expr)

(1/2)*Matrix([
[-1, 3, -3, 1],
[2, -5, 4, -1],
[-1, 0, 1, 0],
[0, 2, 0, 0]])

And, in case somebody needs it, its inverse looks like this:

[30]: M_CR.I

[30]:

MCR
−1 =


1 1 −1 1
0 0 0 1
1 1 1 1
6 4 2 1


[31]: print(_.expr)

Matrix([[1, 1, -1, 1], [0, 0, 0, 1], [1, 1, 1, 1], [6, 4, 2, 1]])

Tangent Vectors

To get the tangent vectors, we simply have to take the first derivative . . .

[32]: pd4 = p4.diff(t)

. . . and evaluate it at the beginning and the end of the segment:

[33]: pd4.evaluated_at(t, 0)

[33]: d
dt

p4

∣∣∣∣
t=0

= − x3

2
+

x5

2

[34]: pd4.evaluated_at(t, 1)

[34]: d
dt

p4

∣∣∣∣
t=1

= − x4

2
+

x6

2

These two expressions can be generalized to (as already shown in the notebook about Catmull–Rom
properties (page 56)):

ẋi =
xi+1 − xi−1

2

69

Using Bézier Segments

The above equation for the tangent vectors can be used to construct Hermite splines (page 13) or, after
dividing them by 3, to obtain the control points for cubic Bézier spline segments (page 49):

x̃(+)
i = xi +

ẋi
3

= xi +
xi+1 − xi−1

6

x̃(−)i = xi −
ẋi
3

= xi −
xi+1 − xi−1

6

. doc/euclidean/catmull-rom-uniform.ipynb ends here.

The following section was generated from doc/euclidean/catmull-rom-non-uniform.ipynb .

Non-Uniform Catmull–Rom Splines

[CR74] describes only the uniform case (page 62), but it is straightforward to extend the method to
non-uniform splines.

The method creates three linear interpolations (and extrapolations) between neighboring pairs of the
four relevant control points and then blends the three resulting points with a quadratic B-spline basis
function.

As we have seen in the notebook about uniform Catmull–Rom splines (page 65) and as we will again see in
the notebook about the Barry–Goldman algorithm (page 78), the respective degrees can be reversed. This
means that equivalently, two (overlapping) quadratic Lagrange interpolations can be used, followed
by linearly blending the two resulting points.

Since latter is both easier to implement and easier to wrap one’s head around, we use it in the following
derivations.

We will derive the tangent vectors (page 72) at the segment boundaries (which will serve as basis for
deriving non-uniform Kochanek–Bartels splines (page 95) later) and the basis matrix (page ??). See the
notebook about the Barry–Goldman algorithm (page 75) for an alternative (but closely related) derivation.

[1]: import sympy as sp
sp.init_printing()

[2]: x3, x4, x5, x6 = sp.symbols('xbm3:7')

[3]: t, t3, t4, t5, t6 = sp.symbols('t t3:7')

We use some tools from utility.py:

[4]: from utility import NamedExpression, NamedMatrix

As shown in the notebook about Lagrange interpolation (page 5), it can be implemented using Neville’s
algorithm:

[5]: def lerp(xs, ts, t):
"""Linear interpolation.

Returns the interpolated value at time *t*,
given the two values *xs* at times *ts*.

"""
x_begin, x_end = xs

(continues on next page)

70

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/euclidean/catmull-rom-uniform.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/euclidean/catmull-rom-non-uniform.ipynb
utility.py

(continued from previous page)

t_begin, t_end = ts
return (x_begin * (t_end - t) + x_end * (t - t_begin)) / (t_end - t_begin)

[6]: def neville(xs, ts, t):
"""Lagrange interpolation using Neville's algorithm.

Returns the interpolated value at time *t*,
given the values *xs* at times *ts*.

"""
assert len(xs) == len(ts)
while len(xs) > 1:

step = len(ts) - len(xs) + 1
xs = [

lerp(*args, t)
for args in zip(zip(xs, xs[1:]), zip(ts, ts[step:]))]

return xs[0]

Alternatively, sympy.interpolate()24 could be used.

We use two overlapping quadratic Lagrange interpolations followed by linear blending:

[7]: p4 = NamedExpression(
'pbm4',
lerp([

neville([x3, x4, x5], [t3, t4, t5], t),
neville([x4, x5, x6], [t4, t5, t6], t),

], [t4, t5], t))

Note

Since the two invocations of Neville’s algorithm overlap, some values that are used by both are unnec-
essarily computed by both. It would be more efficient to calculate each of these values only once.

The Barry–Goldman algorithm (page 75) avoids this repeated computation.

But here, since we are using symbolic expressions, this doesn’t really matter because the redundant
expressions should be simplified away by SymPy.

[8]: p4.simplify()

[8]: p4 =

(t− t4) (t3 − t4) (t3 − t5) (− (t− t4) (t4 − t5) (−x5 (t− t6) + x6 (t− t5)) + (t− t6) (t5 − t6) (−x4 (t− t5) + x5 (t− t4)))− (t− t5) (t4 − t6) (t5 − t6) (− (t− t3) (t3 − t4) (−x4 (t− t5) + x5 (t− t4)) + (t− t5) (t4 − t5) (−x3 (t− t4) + x4 (t− t3)))

(t3 − t4) (t3 − t5) (t4 − t5)
2 (t4 − t6) (t5 − t6)

The following expressions can be simplified by introducing a few new symbols ∆i:

[9]: delta3, delta4, delta5 = sp.symbols('Delta3:6')
deltas = {

t4 - t3: delta3,
(continues on next page)

24 https://docs.sympy.org/latest/modules/polys/reference.html#sympy.polys.polyfuncs.interpolate

71

https://docs.sympy.org/latest/modules/polys/reference.html#sympy.polys.polyfuncs.interpolate

(continued from previous page)

t5 - t4: delta4,
t6 - t5: delta5,
t5 - t3: delta3 + delta4,
t6 - t4: delta4 + delta5,
t6 - t3: delta3 + delta4 + delta5,
A few special cases that SymPy has a hard time resolving:
t4 + t4 - t3: t4 + delta3,
t6 + t6 - t3: t6 + delta3 + delta4 + delta5,

}

Tangent Vectors

To get the tangent vectors at the control points, we just have to take the first derivative . . .

[10]: pd4 = p4.diff(t)

. . . and evaluate it at t4 and t5:

[11]: start_tangent = pd4.evaluated_at(t, t4)
start_tangent.subs(deltas).simplify()

[11]: d
dt

p4

∣∣∣∣
t=t4

=
∆2

3 (−x4 + x5) + ∆2
4 (−x3 + x4)

∆3∆4 (∆3 + ∆4)

[12]: end_tangent = pd4.evaluated_at(t, t5)
end_tangent.subs(deltas).simplify()

[12]: d
dt

p4

∣∣∣∣
t=t5

=
−∆2

4x5 + ∆2
4x6 − ∆2

5x4 + ∆2
5x5

∆4∆5 (∆4 + ∆5)

Both results lead to the same general expression (which is expected, since the incoming and outgoing
tangents are supposed to be equal):

ẋi =
(ti+1 − ti)

2(xi − xi−1) + (ti − ti−1)
2(xi+1 − xi)

(ti+1 − ti)(ti − ti−1)(ti+1 − ti−1)

=
∆i

2(xi − xi−1) + ∆i−1
2(xi+1 − xi)

∆i∆i−1(∆i + ∆i−1)

Equivalently, this can be written as:

ẋi =
(ti+1 − ti)(xi − xi−1)

(ti − ti−1)(ti+1 − ti−1)
+

(ti − ti−1)(xi+1 − xi)

(ti+1 − ti)(ti+1 − ti−1)

=
∆i(xi − xi−1)

∆i−1(∆i + ∆i−1)
+

∆i−1(xi+1 − xi)

∆i(∆i + ∆i−1)

An alternative (but very similar) way to derive these tangent vectors is shown in the notebook about the
Barry–Goldman algorithm (page 83).

And there is yet another way to calculate the tangents, without even needing to obtain a cubic polyno-
mial and its derivative: Since we are using a linear blend of two quadratic polynomials, we know that
at the beginning (t = t4) only the first quadratic polynomial has an influence and at the end (t = t5)

72

only the second quadratic polynomial is relevant. Therefore, to determine the tangent vector at the
beginning of the segment, it is sufficient to get the derivative of the first quadratic polynomial.

[13]: first_quadratic = neville([x3, x4, x5], [t3, t4, t5], t)

[14]: sp.degree(first_quadratic, t)

[14]: 2

[15]: first_quadratic.diff(t).subs(t, t4)

[15]: (−t3+t4)(−x4+x5)
−t4+t5

+ (−t4+t5)(−x3+x4)
−t3+t4

−t3 + t5

This can be written as (which is sometimes called the standard three-point difference formula):

ẋi =
∆ivi−1 + ∆i−1vi

∆i−1 + ∆i
,

with ∆i = ti+1 − ti and vi =
xi+1−xi

∆i
.

[dB78] calls this piecewise cubic Bessel interpolation, and it has also been called Bessel tangent method,
Overhauser method and Bessel–Overhauser splines.

Note

Even though this formula is commonly associated with the name Overhauser, it is not describing the
tangents of Overhauser splines (as presented in [Ove68]).

Long story short, it’s the same as we had above:

[16]: assert sp.simplify(_ - start_tangent.expr) == 0

The first derivative of the second quadratic polynomial can be used to get the tangent vector at the
end of the segment.

[17]: second_quadratic = neville([x4, x5, x6], [t4, t5, t6], t)
second_quadratic.diff(t).subs(t, t5)

[17]: (−t4+t5)(−x5+x6)
−t5+t6

+ (−t5+t6)(−x4+x5)
−t4+t5

−t4 + t6

[18]: assert sp.simplify(_ - end_tangent.expr) == 0

You might encounter another way to write the equation for ẋ4 (e.g. at https://stackoverflow.com/a/
23980479/) . . .

[19]: (x4 - x3) / (t4 - t3) - (x5 - x3) / (t5 - t3) + (x5 - x4) / (t5 - t4)

[19]: −x4 + x5

−t4 + t5
− −x3 + x5

−t3 + t5
+
−x3 + x4

−t3 + t4

. . . but again, this is equivalent to the equation shown above:

[20]: assert sp.simplify(_ - start_tangent.expr) == 0

73

https://stackoverflow.com/a/23980479/
https://stackoverflow.com/a/23980479/

Using Non-Uniform Bézier Segments

Similar to the uniform case (page 70), the above equation for the tangent vectors can be used to construct
non-uniform Hermite splines (page 13) or, after multiplying them with the appropriate parameter in-
terval and dividing them by 3, to obtain the two additional control points for non-uniform cubic Bézier
spline segments (page 55):

x̃(+)
i = xi +

∆i ẋi
3

= xi +
∆i
3

∆ivi−1 + ∆i−1vi
∆i−1 + ∆i

= xi +
∆i

2(xi − xi−1)

3∆i−1(∆i + ∆i−1)
+

∆i−1(xi+1 − xi)

3(∆i + ∆i−1)

x̃(−)i = xi −
∆i−1 ẋi

3

= xi −
∆i−1

3
∆ivi−1 + ∆i−1vi

∆i−1 + ∆i

= xi −
∆i(xi − xi−1)

3(∆i + ∆i−1)
− ∆i−1

2(xi+1 − xi)

3∆i(∆i + ∆i−1)

This is again using ∆i = ti+1 − ti and vi =
xi+1−xi

∆i
.

Animation

To illustrate how two quadratic Lagrange interpolations followed by linear blending might look like,
we can generate an animation by means of the file catmull_rom.py:

[21]: from catmull_rom import animation_2_1, animation_1_2
from IPython.display import HTML

[22]: vertices = [
(1, 0),
(0.5, 1),
(6, 2),
(5, 0),

]

[23]: times = [
0,
1,
6,
8,

]

[24]: ani_2_1 = animation_2_1(vertices, times)

[25]: HTML(ani_2_1.to_jshtml(default_mode='reflect'))

[25]: <IPython.core.display.HTML object>

In the beginning of this notebook we claimed that two quadratic interpolations followed by linear
blending are easier to understand. To prove this, let’s have a look at how three linear interpolations
(and extrapolations) followed by quadratic B-spline blending would look like:

74

catmull_rom.py

[26]: ani_1_2 = animation_1_2(vertices, times)

[27]: HTML(ani_1_2.to_jshtml(default_mode='reflect'))

[27]: <IPython.core.display.HTML object>

Would you agree that this is less straightforward?

If you would rather replace the quadratic B-spline basis function with a bunch of linear interpolations
(using De Boor’s algorithm), take a look at the notebook about the Barry–Goldman algorithm (page 83).
. doc/euclidean/catmull-rom-non-uniform.ipynb ends here.

The following section was generated from doc/euclidean/catmull-rom-barry-goldman.ipynb .

Barry–Goldman Algorithm

The Barry–Goldman algorithm (named after Phillip Barry and Ronald Goldman) can be used to calculate
values of non-uniform Catmull–Rom splines (page 70). We have also applied this algorithm to rotation
splines (page 147).

[CR74] describes “a class of local interpolating splines” and [BG88] describes “a recursive evaluation
algorithm for a class of Catmull–Rom splines”, by which they mean a sub-class of the original class,
which only contains splines generated from a combination of Lagrange interpolation (page 5) and B-
spline blending:

In particular, they observed that certain choices led to interpolatory curves. Although Cat-
mull and Rom discussed a more general case, we will restrict our attention to an important
class of Catmull–Rom splines obtained by combining B-spline basis functions and Lagrange
interpolating polynomials. [. . .] They are piecewise polynomial, have local support, are in-
variant under affine transformations, and have certain differentiability and interpolatory
properties.

—[BG88], section 1: “Introduction”

The algorithm can be set up to construct curves of arbitrary degree (given enough vertices and their
parameter values), but here we only take a look at the cubic case (using four vertices), which seems to
be what most people mean by the term Catmull–Rom splines.

The algorithm is a combination of two sub-algorithms:

The Catmull–Rom evaluation algorithm is constructed by combining the de Boor algorithm
for evaluating B-spline curves with Neville’s algorithm for evaluating Lagrange polynomi-
als.

—[BG88], abstract

Combining the two will lead to a multi-stage algorithm, where each stage consists of only linear
interpolations (and extrapolations).

We will use the algorithm here to derive an expression for the tangent vectors (page 83), which will
show that the algorithm indeed generates non-uniform Catmull–Rom splines (page 72).

75

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/euclidean/catmull-rom-non-uniform.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/euclidean/catmull-rom-barry-goldman.ipynb

Triangular Schemes

In [BG88], the presented algorithms are illustrated using triangular evaluation patterns, which we will
use here in a very similar form.

As an example, let’s look at the most basic building block: linear interpolation between two given
points (in this case x4 and x5 with corresponding parameter values t4 and t5, respectively):

p4,5
t5−t
t5−t4

t−t4
t5−t4

x4 x5

The values at the base of the triangle are known, and the triangular scheme shows how the value at
the apex can be calculated from them.

In this example, to obtain the linear polynomial p4,5 one has to add x4, weighted by the factor shown
next to it (t5−t

t5−t4
), and x5, weighted by the factor next to it (t−t4

t5−t4
).

The parameter t can be chosen arbitrarily, but in this example we are mostly interested in the range
t4 ≤ t ≤ t5. If the parameter value is outside this range, the process is more appropriately called
extrapolation instead of interpolation. Since we will need linear interpolation (and extrapolation) quite
a few times, let’s define a helper function:

[1]: def lerp(xs, ts, t):
"""Linear interpolation.

Returns the interpolated value at time *t*,
given the two values *xs* at times *ts*.

"""
x_begin, x_end = xs
t_begin, t_end = ts
return (x_begin * (t_end - t) + x_end * (t - t_begin)) / (t_end - t_begin)

Neville’s Algorithm

We have already seen this algorithm in our notebook about Lagrange interpolation (page 5).

In the quadratic case, it looks like this:

p3,4,5
t5−t
t5−t3

t−t3
t5−t3

p3,4 p4,5
t4−t
t4−t3

t−t3
t4−t3

t5−t
t5−t4

t−t4
t5−t4

x3 x4 x5

The cubic case is shown in figure 2 of [BG88].

[2]: import matplotlib.pyplot as plt
import numpy as np

Let’s try to plot this for three points:

76

[3]: points = np.array([
(0, 0),
(0.5, 2),
(3, 0),

])

In the following example plots we show the uniform case (with t3 = 3, t4 = 4 and t5 = 5), but don’t
worry, the algorithm works just as well for arbitrary non-uniform time values.

[4]: plot_times = np.linspace(4, 5, 30)

[5]: plt.scatter(*np.array([
lerp(

[lerp(points[:2], [3, 4], t), lerp(points[1:], [4, 5], t)],
[3, 5], t)

for t in plot_times]).T)
plt.plot(*points.T, 'x:g')
plt.axis('equal');

Note that the quadratic curve is defined by three points but we are only evaluating it between two of
them (for 4 ≤ t ≤ 5).

De Boor’s Algorithm

This algorithm (named after Carl de Boor25, see [dB72]) can be used to calculate B-spline basis func-
tions.

The quadratic case looks like this:

p3,4,5
t5−t
t5−t4

t−t4
t5−t4

p3,4 p4,5
t5−t
t5−t3

t−t3
t5−t3

t6−t
t6−t4

t−t4
t6−t4

x3 x4 x5

The cubic case shown in figure 1 of [BG88].
25 https://en.wikipedia.org/wiki/Carl_R._de_Boor

77

https://en.wikipedia.org/wiki/Carl_R._de_Boor

[6]: plt.scatter(*np.array([
lerp(

[lerp(points[:2], [3, 5], t), lerp(points[1:], [4, 6], t)],
[4, 5], t)

for t in plot_times]).T)
plt.plot(*points.T, 'x:g')
plt.axis('equal');

Combining Both Algorithms

Figure 5 of [CR74] shows an example where linear interpolation is followed by quadratic B-spline
blending to create a cubic curve.

We can re-create this example with the building blocks from above:

• At the base of the triangle, we put four known vertices.

• Consecutive pairs of these vertices form three linear interpolations (and extrapolations), resulting
in three interpolated (and extrapolated) values.

• On top of these three values, we arrange a quadratic instance of de Boor’s algorithm (as shown
above).

This culminates in the final value of the spline (given an appropriate parameter value t) at the apex of
the triangle, which looks like this:

p3,4,5,6
t5−t
t5−t4

t−t4
t5−t4

p3,4,5 p4,5,6
t5−t
t5−t3

t−t3
t5−t3

t6−t
t6−t4

t−t4
t6−t4

p3,4 p4,5 p5,6
t4−t
t4−t3

t−t3
t4−t3

t5−t
t5−t4

t−t4
t5−t4

t6−t
t6−t5

t−t5
t6−t5

x3 x4 x5 x6

Here we are considering the fifth spline segment p3,4,5,6(t) (represented at the apex of the triangle)
from x4 to x5 (to be found at the base of the triangle) which corresponds to the parameter range
t4 ≤ t ≤ t5. To calculate the values in this segment, we also need to know the preceding control point
x3 (at the bottom left) and the following control point x6 (at the bottom right). But not only their
positions are relevant, we also need the corresponding parameter values t3 and t6, respectively.

78

This same triangular scheme is also shown in figure 3 of [YSK11], except that here we shifted the
indices by +3.

Another way to construct a cubic curve with this algorithm would be to flip the degrees of interpolation
and blending, in other words:

• Instead of three linear interpolations (and extrapolations), apply two overlapping quadratic La-
grange interpolations using Neville’s algorithm (as shown above) to x3, x4, x5 and x4, x5, x6,
respectively. Note that the interpolation of x4 and x5 appears in both triangles but has to be
calculated only once (see also figures 3 and 4 in [BG88]).

• This will occupy the lower two stages of the triangle, yielding two interpolated values.

• Those two values are then linearly blended in the final stage.

Readers of the notebook about uniform Catmull–Rom splines (page 62) may already suspect that, for others
it might be a revelation: both ways lead to exactly the same triangular scheme and therefore they are
equivalent!

The same scheme, but only for the uniform case, is also shown in figure 7 of [BG88], which casually
mentions the equivalent cases (with m being the degree of Lagrange interpolation and n being the
degree of the B-spline basis functions):

Note too from Figure 7 that the case n = 1, m = 2 [. . .] is identical to the case n = 2, m = 1
[. . .]

—[BG88], section 3: “Examples”

Not an Overhauser Spline

Equally casually, they mention:

Finally, the particular case here is also an Overhauser spline [Ove68].

—[BG88], section 3: “Examples”

This is not true. Overhauser splines – as described in [Ove68] – don’t provide a choice of pa-
rameter values. The parameter values are determined by the Euclidean distances between control
points, similar, but not quite identical to chordal parameterization (page 59). Calculating a value of a
Catmull–Rom spline doesn’t involve calculating any distances.

For completeness’ sake, there are two more combinations that lead to cubic splines, but they have their
limitations:

• Cubic Lagrange interpolation, followed by no blending at all, which leads to a cubic spline that’s
not C1 continuous (only C0), as shown in figure 8 of [BG88].

• No interpolation at all, followed by cubic B-spline blending, which leads to an approximating
spline (instead of an interpolating spline), as shown in figure 5 of [BG88].

Note

Here we are using the time instances of the Lagrange interpolation also as B-spline knots. Equation
(9) of [BG88] shows a more generic formulation of the algorithm with separate parameters si and ti.

79

Step by Step

The triangular figure above looks more complicated than it really is. It’s just a bunch of linear in-
terpolations and extrapolations.

Let’s go through the figure above, piece by piece.

[7]: import sympy as sp

[8]: t = sp.symbols('t')

[9]: x3, x4, x5, x6 = sp.symbols('xbm3:7')

[10]: t3, t4, t5, t6 = sp.symbols('t3:7')

We use some custom SymPy-based tools from utility.py:

[11]: from utility import NamedExpression, NamedMatrix

First Stage

In the center of the bottom row, there is a straightforward linear interpolation from x4 to x5 within the
interval from t4 to t5.

[12]: p45 = NamedExpression('pbm_4,5', lerp([x4, x5], [t4, t5], t))
p45

[12]: p4,5 =
x4 (−t + t5) + x5 (t− t4)

−t4 + t5

Obviously, this starts at:

[13]: p45.evaluated_at(t, t4)

[13]: p4,5

∣∣∣
t=t4

= x4

. . . and ends at:

[14]: p45.evaluated_at(t, t5)

[14]: p4,5

∣∣∣
t=t5

= x5

The bottom left of the triangle looks very similar, with a linear interpolation from x3 to x4 within the
interval from t3 to t4.

[15]: p34 = NamedExpression('pbm_3,4', lerp([x3, x4], [t3, t4], t))
p34

[15]: p3,4 =
x3 (−t + t4) + x4 (t− t3)

−t3 + t4

However, that’s not the parameter range we are interested in! We are interested in the range from t4 to
t5. Therefore, this is not actually an interpolation between x3 and x4, but rather a linear extrapolation
starting at x4 . . .

80

utility.py

[16]: p34.evaluated_at(t, t4)

[16]: p3,4

∣∣∣
t=t4

= x4

. . . and ending at some extrapolated point beyond x4:

[17]: p34.evaluated_at(t, t5)

[17]: p3,4

∣∣∣
t=t5

=
x3 (t4 − t5) + x4 (−t3 + t5)

−t3 + t4

Similarly, at the bottom right of the triangle there isn’t a linear interpolation from x5 to x6, but rather
a linear extrapolation that just reaches x5 at the end of the parameter interval (i.e. at t = t5).

[18]: p56 = NamedExpression('pbm_5,6', lerp([x5, x6], [t5, t6], t))
p56

[18]: p5,6 =
x5 (−t + t6) + x6 (t− t5)

−t5 + t6

[19]: p56.evaluated_at(t, t4)

[19]: p5,6

∣∣∣
t=t4

=
x5 (−t4 + t6) + x6 (t4 − t5)

−t5 + t6

[20]: p56.evaluated_at(t, t5)

[20]: p5,6

∣∣∣
t=t5

= x5

Second Stage

The second stage of the algorithm involves linear interpolations of the results of the previous stage.

[21]: p345 = NamedExpression('pbm_3,4,5', lerp([p34.name, p45.name], [t3, t5], t))
p345

[21]:
p3,4,5 =

p3,4 (−t + t5) + p4,5 (t− t3)

−t3 + t5

[22]: p456 = NamedExpression('pbm_4,5,6', lerp([p45.name, p56.name], [t4, t6], t))
p456

[22]:
p4,5,6 =

p4,5 (−t + t6) + p5,6 (t− t4)

−t4 + t6

Those interpolations are defined over a parameter range from t3 to t5 and from t4 to t6, respectively.
In each case, we are only interested in a sub-range, namely from t4 to t5.

These are the start and end points at t4 and t5:

[23]: p345.evaluated_at(t, t4, symbols=[p34, p45])

[23]:
p3,4,5

∣∣∣
t=t4

=
p3,4

∣∣∣
t=t4

(−t4 + t5) + p4,5

∣∣∣
t=t4

(−t3 + t4)

−t3 + t5

81

[24]: p345.evaluated_at(t, t5, symbols=[p34, p45])

[24]: p3,4,5

∣∣∣
t=t5

= p4,5

∣∣∣
t=t5

[25]: p456.evaluated_at(t, t4, symbols=[p45, p56])

[25]: p4,5,6

∣∣∣
t=t4

= p4,5

∣∣∣
t=t4

[26]: p456.evaluated_at(t, t5, symbols=[p45, p56])

[26]:
p4,5,6

∣∣∣
t=t5

=
p4,5

∣∣∣
t=t5

(−t5 + t6) + p5,6

∣∣∣
t=t5

(−t4 + t5)

−t4 + t6

Third Stage

The last step is quite simple:

[27]: p3456 = NamedExpression(
'pbm_3,4,5,6',
lerp([p345.name, p456.name], [t4, t5], t))

p3456

[27]:
p3,4,5,6 =

p3,4,5 (−t + t5) + p4,5,6 (t− t4)

−t4 + t5

This time, the interpolation interval is exactly the one we care about.

To get the final result, we just have to combine all the above expressions:

[28]: p3456 = p3456.subs_symbols(p345, p456, p34, p45, p56).simplify()
p3456

[28]: p3,4,5,6 =

(t− t4) (t3 − t4) (t3 − t5) (− (t− t4) (t4 − t5) (−x5 (t− t6) + x6 (t− t5)) + (t− t6) (t5 − t6) (−x4 (t− t5) + x5 (t− t4)))− (t− t5) (t4 − t6) (t5 − t6) (− (t− t3) (t3 − t4) (−x4 (t− t5) + x5 (t− t4)) + (t− t5) (t4 − t5) (−x3 (t− t4) + x4 (t− t3)))

(t3 − t4) (t3 − t5) (t4 − t5)
2 (t4 − t6) (t5 − t6)

We can make this marginally shorter if we rewrite the segment durations as ∆i = ti+1 − ti:

[29]: delta3, delta4, delta5 = sp.symbols('Delta3:6')
deltas = {

t4 - t3: delta3,
t5 - t4: delta4,
t6 - t5: delta5,
t5 - t3: delta3 + delta4,
t6 - t4: delta4 + delta5,
t6 - t3: delta3 + delta4 + delta5,
A few special cases that SymPy has a hard time resolving:
t4 + t4 - t3: t4 + delta3,
t6 + t6 - t3: t6 + delta3 + delta4 + delta5,

}

[30]: p3456.subs(deltas)

82

[30]: p3,4,5,6 =

−∆3 (−∆3 − ∆4) (t− t4) (∆4 (t− t4) (−x5 (t− t6) + x6 (t− t5))− ∆5 (t− t6) (−x4 (t− t5) + x5 (t− t4))) + ∆5 (−∆4 − ∆5) (t− t5) (∆3 (t− t3) (−x4 (t− t5) + x5 (t− t4))− ∆4 (t− t5) (−x3 (t− t4) + x4 (t− t3)))

∆3∆2
4∆5 (−∆3 − ∆4) (−∆4 − ∆5)

Apart from checking if it’s really cubic . . .

[31]: sp.degree(p3456.expr, t)

[31]: 3

. . . and if it’s really interpolating . . .

[32]: p3456.evaluated_at(t, t4).simplify()

[32]: p3,4,5,6

∣∣∣
t=t4

= x4

[33]: p3456.evaluated_at(t, t5).simplify()

[33]: p3,4,5,6

∣∣∣
t=t5

= x5

. . . the only thing left to do is to check its . . .

Tangent Vectors

To get the tangent vectors at the control points, we just have to take the first derivative . . .

[34]: pd3456 = p3456.diff(t)

. . . and evaluate it at t4 and t5:

[35]: pd3456.evaluated_at(t, t4).simplify().simplify()

[35]: d
dt

p3,4,5,6

∣∣∣∣
t=t4

=
(t3 − t4)

2 (x4 − x5) + (t4 − t5)
2 (x3 − x4)

(t3 − t4) (t3 − t5) (t4 − t5)

[36]: pd3456.evaluated_at(t, t5).simplify()

[36]: d
dt

p3,4,5,6

∣∣∣∣
t=t5

=
(t4 − t5)

2 (x5 − x6) + (t5 − t6)
2 (x4 − x5)

(t4 − t5) (t4 − t6) (t5 − t6)

If all went well, this should be identical to the result in the notebook about non-uniform Catmull–Rom
splines (page 72).

Animation

The linear interpolations (and extrapolations) of this algorithm can be shown graphically. By means of
the file barry_goldman.py, we can generate an animation of the algorithm:

[37]: from barry_goldman import animation

[38]: from IPython.display import HTML

83

barry_goldman.py

[39]: vertices = [
(1, 0),
(0.5, 1),
(6, 2),
(5, 0),

]

[40]: times = [
0,
1,
6,
8,

]

[41]: ani = animation(vertices, times)

[42]: HTML(ani.to_jshtml(default_mode='reflect'))

[42]: <IPython.core.display.HTML object>

If this doesn’t look very intuitive to you, you are not alone. For a different (and probably more straight-
forward) point of view, have a look at the notebook about non-uniform Catmull–Rom splines (page 74).
. doc/euclidean/catmull-rom-barry-goldman.ipynb ends here.

1.7 Kochanek–Bartels Splines

Kochanek–Bartels splines (a.k.a. TCB splines) are named after Doris Kochanek and Richard Bartels (more
specifically, after their paper [KB84]).

A Python implementation is available in the splines.KochanekBartels (page 161) class.

The following section was generated from doc/euclidean/kochanek-bartels-properties.ipynb .

Properties of Kochanek–Bartels Splines

Kochanek–Bartels splines (a.k.a. TCB splines) are interpolating cubic polynomial splines, with three
user-defined parameters per vertex (of course they can also be chosen to be the same three values for
the whole spline), which can be used to change the shape and velocity of the spline.

These three parameters are called T for “tension”, C for “continuity” and B for “bias”. With the default
values of C = 0 and B = 0, a Kochanek–Bartels spline is identical to a cardinal spline. If the “tension”
parameter also has its default value T = 0, it is also identical to a Catmull–Rom spline (page 55).

[1]: import splines

Let’s import a plotting function from helper.py . . .

[2]: from helper import plot_spline_2d

. . . and use it to implement a bespoke plotting function to illustrate the TCB parameters:

[3]: import matplotlib.pyplot as plt
import numpy as np

def plot_tcb(*tcb, ax=None):
(continues on next page)

84

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/euclidean/catmull-rom-barry-goldman.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/euclidean/kochanek-bartels-properties.ipynb
helper.py

(continued from previous page)

"""Plot four TCB examples."""
if ax is None:

ax = plt.gca()
vertices = [

(-3.5, 0),
(-1, 1.5),
(0, 0.1),
(1, 1.5),
(3.5, 0),
(1, -1.5),
(0, -0.1),
(-1, -1.5),

]
for idx, tcb in zip([1, 7, 3, 5], tcb):

all_tcb = np.zeros((len(vertices), 3))
all_tcb[idx] = tcb
s = splines.KochanekBartels(

vertices, tcb=all_tcb, endconditions='closed')
label = ', '.join(

f'{name} = {value}'
for name, value in zip('TCB', tcb)
if value)

plot_spline_2d(s, chords=False, label=label, ax=ax)
plot_spline_2d(

splines.KochanekBartels(vertices, endconditions='closed'),
color='lightgrey', chords=False, ax=ax)

lines = [l for l in ax.get_lines() if not l.get_label().startswith('_')]
https://matplotlib.org/tutorials/intermediate/legend_guide.html#multiple-

↪→legends-on-the-same-axes
ax.add_artist(ax.legend(

handles=lines[:2], bbox_to_anchor=(0, 0., 0.5, 1),
loc='center', numpoints=3))

ax.legend(
handles=lines[2:], bbox_to_anchor=(0.5, 0., 0.5, 1),
loc='center', numpoints=3)

Tension

[4]: plot_tcb((0.5, 0, 0), (1, 0, 0), (-0.5, 0, 0), (-1, 0, 0))

85

Continuity

[5]: plot_tcb((0, -0.5, 0), (0, -1, 0), (0, 0.5, 0), (0, 1, 0))

Note that the cases T = 1 and C = −1 have a very similar shape (a.k.a. “image”), but they have a
different timing (and therefore different velocities):

[6]: plot_tcb((1, 0, 0), (0, -1, 0), (0.5, 0, 0), (0, -0.5, 0))

86

A value of C = −1 on adjacent vertices leads to linear segments:

[7]: vertices1 = [(0, 0), (1, 1), (0, 2), (3, 2), (4, 1), (3, 0)]
s1 = splines.KochanekBartels(vertices1, tcb=(0, -1, 0), endconditions='closed')
plot_spline_2d(s1, chords=False)

Bias

This could also be called “overshoot” (if B > 0) and “undershoot” (if B < 0):

[8]: plot_tcb((0, 0, 0.5), (0, 0, 1), (0, 0, -0.5), (0, 0, -1))

87

Bias −1 followed by +1 can be used to achieve linear segments between two control points:

[9]: vertices2 = [(0, 0), (1.5, 0), (1, 1), (0, 0.5)]
tcb2 = [(0, 0, -1), (0, 0, 1), (0, 0, -1), (0, 0, 1)]
s2 = splines.KochanekBartels(vertices2, tcb=tcb2, endconditions='closed')
plot_spline_2d(s2, chords=False)

A sequence of B = −1, C = −1 and B = +1 can be used to get two adjacent linear segments:

[10]: vertices3 = [(0, 0), (1, 0), (0, 0.5)]
tcb3 = [(0, 0, -1), (0, -1, 0), (0, 0, 1)]
s3 = splines.KochanekBartels(vertices3, tcb=tcb3, endconditions='closed')
plot_spline_2d(s3, chords=False)

88

Combinations

[11]: plot_tcb((1, -1, 0), (-1, 1, 0), (-1, -1, 0), (1, 1, 0))

[12]: plot_tcb((1, 0, 1), (-1, 0, 1), (0, -1, 1), (0, 1, -1))

. doc/euclidean/kochanek-bartels-properties.ipynb ends here.

89

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/euclidean/kochanek-bartels-properties.ipynb

The following section was generated from doc/euclidean/kochanek-bartels-uniform.ipynb .

Uniform Kochanek–Bartels Splines

As a starting point, remember the tangent vectors of uniform Catmull–Rom splines (page 56) (see also
equation 3 of [KB84]):

ẋi =
xi+1 − xi−1

2
,

which can be re-written as

ẋi =
(xi − xi−1) + (xi+1 − xi)

2
.

Parameters

TCB splines are all about inserting the parameters T, C and B into this equation.

Tension

The usage of T is shown in equation 4 of [KB84]:

ẋi = (1− Ti)
(xi − xi−1) + (xi+1 − xi)

2

Continuity

Up to now, the goal was to have a continuous first derivative at the control points, i.e. the incoming
and outgoing tangent vectors were identical:

ẋi = ẋ(−)i = ẋ(+)
i

This also happens to be the requirement for a spline to be C1 continuous.

The “continuity” parameter C allows us to break this continuity if we so desire, leading to different
incoming and outgoing tangent vectors (see equations 5 and 6 in [KB84]):

ẋ(−)i =
(1− Ci)(xi − xi−1) + (1 + Ci)(xi+1 − xi)

2

ẋ(+)
i =

(1 + Ci)(xi − xi−1) + (1− Ci)(xi+1 − xi)

2

Bias

The usage of B is shown in equation 7 of [KB84]:

ẋi =
(1 + Bi)(xi − xi−1) + (1− Bi)(xi+1 − xi)

2

90

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/euclidean/kochanek-bartels-uniform.ipynb

All Three Combined

To get the tangent vectors of a TCB spline, the three equations can be combined (see equations 8 and
9 in [KB84]):

ẋ(+)
i =

(1− Ti)(1 + Ci)(1 + Bi)(xi − xi−1) + (1− Ti)(1− Ci)(1− Bi)(xi+1 − xi)

2

ẋ(−)i =
(1− Ti)(1− Ci)(1 + Bi)(xi − xi−1) + (1− Ti)(1 + Ci)(1− Bi)(xi+1 − xi)

2

Note

There is an error in equation (6.11) of [Mil]. All subscripts of x are wrong, most likely copy-pasted
from the preceding equation.

To simplify the results we will get later, we introduce the following shorthands (as suggested in [Mil]):

ai = (1− Ti)(1 + Ci)(1 + Bi),

bi = (1− Ti)(1− Ci)(1− Bi),

ci = (1− Ti)(1− Ci)(1 + Bi),

di = (1− Ti)(1 + Ci)(1− Bi),

which lead to the simplified equations

ẋ(+)
i =

ai(xi − xi−1) + bi(xi+1 − xi)

2

ẋ(−)i =
ci(xi − xi−i) + di(xi+1 − xi)

2

Calculation

The tangent vectors are sufficient to implement Kochanek–Bartels splines (via Hermite splines
(page 13)). In the rest of this notebook we are deriving the basis matrix and the basis polynomials for
comparison with other spline types.

[1]: import sympy as sp
sp.init_printing()

As in previous notebooks, we are using some SymPy helper classes from utility.py:

[2]: from utility import NamedExpression, NamedMatrix

And again, we are looking at the fifth spline segment from x4 to x5 (which can easily be generalized
to arbitrary segments).

[3]: x3, x4, x5, x6 = sp.symbols('xbm3:7')

[4]: control_values_KB = sp.Matrix([x3, x4, x5, x6])
control_values_KB

91

utility.py

[4]:


x3
x4
x5
x6


We need three additional parameters per vertex: T, C and B. In our calculation, however, only the
parameters belonging to x4 and x5 are relevant:

[5]: T4, T5 = sp.symbols('T4 T5')
C4, C5 = sp.symbols('C4 C5')
B4, B5 = sp.symbols('B4 B5')

Using the shorthands mentioned above . . .

[6]: a4 = NamedExpression('a4', (1 - T4) * (1 + C4) * (1 + B4))
b4 = NamedExpression('b4', (1 - T4) * (1 - C4) * (1 - B4))
c5 = NamedExpression('c5', (1 - T5) * (1 - C5) * (1 + B5))
d5 = NamedExpression('d5', (1 - T5) * (1 + C5) * (1 - B5))
display(a4, b4, c5, d5)

a4 = (1− T4) (B4 + 1) (C4 + 1)

b4 = (1− B4) (1− C4) (1− T4)

c5 = (1− C5) (1− T5) (B5 + 1)

d5 = (1− B5) (1− T5) (C5 + 1)

. . . we can define the tangent vectors:

[7]: xd4 = NamedExpression(
'xdotbm4^(+)',
sp.S.Half * (a4.name * (x4 - x3) + b4.name * (x5 - x4)))

xd5 = NamedExpression(
'xdotbm5^(-)',
sp.S.Half * (c5.name * (x5 - x4) + d5.name * (x6 - x5)))

display(xd4, xd5)

ẋ(+)
4 =

a4 (−x3 + x4)

2
+

b4 (−x4 + x5)

2

ẋ(−)5 =
c5 (−x4 + x5)

2
+

d5 (−x5 + x6)

2

[8]: display(xd4.subs_symbols(a4, b4))
display(xd5.subs_symbols(c5, d5))

ẋ(+)
4 =

(1− B4) (1− C4) (1− T4) (−x4 + x5)

2
+

(1− T4) (B4 + 1) (C4 + 1) (−x3 + x4)

2

ẋ(−)5 =
(1− B5) (1− T5) (C5 + 1) (−x5 + x6)

2
+

(1− C5) (1− T5) (B5 + 1) (−x4 + x5)

2

92

Basis Matrix

We try to find a transformation from the control values defined above to Hermite control values:

[9]: control_values_H = sp.Matrix([x4, x5, xd4.name, xd5.name])
M_KBtoH = NamedMatrix(r'{M_{\text{KB$,4\to$H}}}', 4, 4)
NamedMatrix(control_values_H, M_KBtoH.name * control_values_KB)

[9]:


x4
x5

ẋ(+)
4

ẋ(−)5

 = MKB, 4→H


x3
x4
x5
x6


If we substitute the above definitions of ẋ4 and ẋ5, we can obtain the matrix elements:

[10]: M_KBtoH.expr = sp.Matrix([
[expr.coeff(cv) for cv in control_values_KB]
for expr in control_values_H.subs([xd4.args, xd5.args]).expand()])

M_KBtoH.pull_out(sp.S.Half)

[10]:

MKB, 4→H =
1
2


0 2 0 0
0 0 2 0
−a4 a4 − b4 b4 0

0 −c5 c5 − d5 d5


Once we have a way to get Hermite control values, we can use the Hermite basis matrix from the
notebook about uniform cubic Hermite splines (page 17) . . .

[11]: M_H = NamedMatrix(
r'{M_\text{H}}',
sp.Matrix([[2, -2, 1, 1],

[-3, 3, -2, -1],
[0, 0, 1, 0],
[1, 0, 0, 0]]))

M_H

[11]:

MH =


2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0


. . . to calculate the basis matrix for Kochanek–Bartels splines:

[12]: M_KB = NamedMatrix(r'{M_{\text{KB},4}}', M_H.name * M_KBtoH.name)
M_KB

[12]: MKB,4 = MHMKB, 4→H

[13]: M_KB = M_KB.subs_symbols(M_H, M_KBtoH).doit()
M_KB.pull_out(sp.S.Half)

[13]:

MKB,4 =
1
2


−a4 a4 − b4 − c5 + 4 b4 + c5 − d5 − 4 d5
2a4 −2a4 + 2b4 + c5 − 6 −2b4 − c5 + d5 + 6 −d5
−a4 a4 − b4 b4 0

0 2 0 0


And for completeness’ sake, its inverse looks like this:

93

[14]: M_KB.I

[14]:

MKB,4
−1 =


b4
a4

b4
a4

b4−2
a4

1
0 0 0 1
1 1 1 1

−c5+d5+6
d5

−c5+d5+4
d5

−c5+d5+2
d5

1



Basis Polynomials

[15]: t = sp.symbols('t')

Multiplication with the monomial basis (page 2) leads to the basis functions:

[16]: b_KB = NamedMatrix(
r'{b_{\text{KB},4}}',
sp.Matrix([t**3, t**2, t, 1]).T * M_KB.expr)

b_KB.T.pull_out(sp.S.Half)

[16]:

bKB,4
T =

1
2


a4t
(
−t2 + 2t− 1

)
t3 (a4 − b4 − c5 + 4) + t2 (−2a4 + 2b4 + c5 − 6) + t (a4 − b4) + 2

t
(
b4 + t2 (b4 + c5 − d5 − 4) + t (−2b4 − c5 + d5 + 6)

)
d5t2 (t− 1)


To be able to plot the basis functions, let’s substitute a4, b4, c5 and d5 back in (which isn’t pretty):

[17]: b_KB = b_KB.subs_symbols(a4, b4, c5, d5).simplify()
b_KB.T.pull_out(sp.S.Half)

[17]: bKB,4
T =

1
2


t (B4 + 1) (C4 + 1) (T4 − 1)

(
t2 − 2t + 1

)
t3 ((B4 − 1) (C4 − 1) (T4 − 1)− (B4 + 1) (C4 + 1) (T4 − 1)− (B5 + 1) (C5 − 1) (T5 − 1) + 4) + t2 (−2 (B4 − 1) (C4 − 1) (T4 − 1) + 2 (B4 + 1) (C4 + 1) (T4 − 1) + (B5 + 1) (C5 − 1) (T5 − 1)− 6) + t (T4 − 1) ((B4 − 1) (C4 − 1)− (B4 + 1) (C4 + 1)) + 2

−t
(
t2 ((B4 − 1) (C4 − 1) (T4 − 1) + (B5 − 1) (C5 + 1) (T5 − 1)− (B5 + 1) (C5 − 1) (T5 − 1) + 4)− t (2 (B4 − 1) (C4 − 1) (T4 − 1) + (B5 − 1) (C5 + 1) (T5 − 1)− (B5 + 1) (C5 − 1) (T5 − 1) + 6) + (B4 − 1) (C4 − 1) (T4 − 1)

)
t2 (B5 − 1) (C5 + 1) (T5 − 1) (t− 1)


Let’s use a helper function from helper.py:

[18]: from helper import plot_basis

[19]: labels = sp.symbols('xbm_i-1 xbm_i xbm_i+1 xbm_i+2')

To be able to plot the basis functions, we have to choose some concrete TCB values.

[20]: plot_basis(
*b_KB.expr.subs({T4: 0, T5: 0, C4: 0, C5: 1, B4: 0, B5: 0}),
labels=labels)

94

helper.py

[21]: plot_basis(
*b_KB.expr.subs({T4: 0, T5: 0, C4: 0, C5: -0.5, B4: 0, B5: 0}),
labels=labels)

Setting all TCB values to zero leads to the basis polynomials of uniform Catmull–Rom splines (page 67).
. doc/euclidean/kochanek-bartels-uniform.ipynb ends here.

The following section was generated from doc/euclidean/kochanek-bartels-non-uniform.ipynb .

Non-Uniform Kochanek–Bartels Splines

[KB84] mainly talks about uniform splines. Only in section 4 – “Adjustments for Parameter Step
Size” – the authors briefly mention the non-uniform case and provide equations for “adjusted tangent
vectors”:

The formulas [. . .] assume an equal time spacing of key frames, implying an equal number
of inbetweens within each key interval. A problem can exist if the animator requests a dif-
ferent number of inbetweens for adjacent intervals. [. . .] If the same parametric derivative
is used for both splines at Pi, these different step sizes will cause a discontinuity in the
speed of motion. What is required, if this discontinuity is not intentional, is a means of
making a local adjustment to the interval separating successive frames before and after the
key frame so that the speed of entry matches the speed of exit. This can be accomplished
by adjusting the specification of the tangent vector at the key frame based on the number

95

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/euclidean/kochanek-bartels-uniform.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/euclidean/kochanek-bartels-non-uniform.ipynb

of inbetweens in the adjacent intervals. [. . .] Once the tangent vectors have been found
for an equal number of inbetweens in the adjacent intervals, the adjustment required for
different numbers of inbetweens (Ni−1 frames between Pi−1 and Pi followed by Ni frames
between Pi and Pi+1) can be made by weighting the tangent vectors appropriately:

adjusted DDi = DDi
2Ni−1

Ni−1 + Ni

adjusted DSi = DSi
2Ni

Ni−1 + Ni

—[KB84], section 4, “Adjustments for Parameter Step Size”

In their notation, DSi is the source derivative (i.e. the incoming tangent vector) at point Pi, and DDi is the
destination derivative (i.e. the outgoing tangent vector). The point Pi corresponds to xi in our notation.

To be able to play around with that, let’s implement it in a function. It turns out that for the way we
will be using this function, we have to use the reciprocal value of the adjustment mentioned in the
paper:

[1]: def kochanek_bartels_tangents(xs, ns):
"""Adjusted tangent vectors according to Kochanek & Bartels."""
x_1, _, x1 = xs
N_1, N0 = ns
uniform = (x1 - x_1) / 2
NB: the K&B paper uses reciprocal weighting factors:
incoming = uniform * (N_1 + N0) / (2 * N0)
outgoing = uniform * (N_1 + N0) / (2 * N_1)
return incoming, outgoing

We can see that the uniform tangents are re-scaled but their direction is unchanged.

This is a hint that – although the paper claims to be using Catmull–Rom splines – we’ll get different
results than in the notebooks about Catmull–Rom splines (page 56).

[2]: import numpy as np
import matplotlib.pyplot as plt

We’ll need the Hermite basis matrix that we derived in the notebook about uniform Hermite splines
(page 17) and which is also shown in equation 2 of [KB84]:

[3]: hermite_matrix = np.array([
[2, -2, 1, 1],
[-3, 3, -2, -1],
[0, 0, 1, 0],
[1, 0, 0, 0]])

Since the paper uses a different (implicit) re-scaling of parameter values (based on the numbers of
inbetweens), we cannot use the classes from the splines (page 159) module and have to re-implement
everything from scratch:

[4]: def pseudo_catmull_rom(xs, ns):
"""Closed Catmull-Rom spline according to Kochanek & Bartels."""
xs = np.asarray(xs)
L = len(xs)
assert L >= 2
assert L == len(ns)

(continues on next page)

96

(continued from previous page)

tangents = [
tangent
for i in range(L)
for tangent in kochanek_bartels_tangents(

[xs[i], xs[(i + 1) % L], xs[(i + 2) % L]],
[ns[i], ns[(i + 1) % L]])

]
Move last (outgoing) tangent to the beginning:
tangents = tangents[-1:] + tangents[:-1]
ts = [

np.linspace(0, 1, n + 1, endpoint=False).reshape(-1, 1)
for n in ns]

return np.concatenate([
t**[3, 2, 1, 0] @ hermite_matrix @ [xs[i], xs[(i + 1) % L], v0, v1]
for i, (t, v0, v1)
in enumerate(zip(ts, tangents[::2], tangents[1::2]))])

Note

The @ operator is used here to do NumPy’s matrix multiplication26.

Let’s plot an example:

[5]: vertices1 = [
(0, 0),
(1, 1),
(2, 0),

]
inbetweens1 = [

5,
20,
15,

]

[6]: plt.scatter(*pseudo_catmull_rom(vertices1, inbetweens1).T, marker='.')
plt.scatter(*np.array(vertices1).T, marker='x', color='k')
plt.axis('equal');

26 https://numpy.org/doc/stable/reference/generated/numpy.matmul.html

97

https://numpy.org/doc/stable/reference/generated/numpy.matmul.html

This doesn’t look too bad, let’s plot the same thing with the splines.CatmullRom (page 161) class for
comparison.

[7]: from splines import CatmullRom

In oder to be able to compare the results, we have to convert the discrete numbers of inbetweens into
re-scaled parameter values:

[8]: def inbetweens2times(inbetweens):
return np.cumsum([0, *(n + 1 for n in inbetweens)])

[9]: times1 = inbetweens2times(inbetweens1)

Now we have everything to create a non-uniform Catmull–Rom spline . . .

[10]: cr_spline1 = CatmullRom(vertices1, times1, endconditions='closed')

. . . and with a helper function from helper.py . . .

[11]: from helper import plot_spline_2d

. . . we can plot it for direct comparison with the one suggested by Kochanek and Bartels:

[12]: plt.plot(
*pseudo_catmull_rom(vertices1, inbetweens1).T,
marker='.', linestyle='', label='K&B')

plot_spline_2d(cr_spline1, dots_per_second=1, label='ours')
plt.legend(numpoints=3);

98

helper.py

Here we can clearly see that not only the lengths of the tangent vectors but also their directions have
been adjusted according to the neighboring parameter intervals.

Let’s look at a different example:

[13]: vertices2 = [
(0, 0),
(0, 0.5),
(4.5, 1.5),
(5, 1),
(2, -1),
(1.5, -1),

]
inbetweens2 = [

2,
15,
3,
12,
2,
10,

]

[14]: times2 = inbetweens2times(inbetweens2)

[15]: cr_spline2 = CatmullRom(vertices2, times2, endconditions='closed')

[16]: plt.plot(
*pseudo_catmull_rom(vertices2, inbetweens2).T,
marker='.', linestyle='', label='K&B')

plot_spline_2d(cr_spline2, dots_per_second=1, label='ours')
plt.legend(numpoints=3);

99

This should illustrate the shortcomings of the tangent vectors suggested by Kochanek and Bartels.

Instead of sticking with their suggestion, we use the correct expression for tangent vectors of non-uniform
Catmull–Rom splines (page 72):

ẋi,Catmull–Rom =
(ti+1 − ti) vi−1 + (ti − ti−1) vi

ti+1 − ti−1
,

where vi =
xi+1−xi
ti+1−ti

.

To this equation, we can simply add the TCB parameters like we did in the notebook about uniform
Kochanek–Bartels splines (page 91), leading to the following equations for the incoming tangent ẋ(−)i

and the outgoing tangent ẋ(+)
i at vertex xi:

ai = (1− Ti)(1 + Ci)(1 + Bi)

bi = (1− Ti)(1− Ci)(1− Bi)

ci = (1− Ti)(1− Ci)(1 + Bi)

di = (1− Ti)(1 + Ci)(1− Bi)

ẋ(+)
i =

ai(ti+1 − ti) vi−1 + bi(ti − ti−1) vi
ti+1 − ti−1

ẋ(−)i =
ci(ti+1 − ti) vi−1 + di(ti − ti−1) vi

ti+1 − ti−1

These equations are used in the implementation of the class splines.KochanekBartels (page 161).
. doc/euclidean/kochanek-bartels-non-uniform.ipynb ends here.

100

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/euclidean/kochanek-bartels-non-uniform.ipynb

1.8 End Conditions

The following section was generated from doc/euclidean/end-conditions-natural.ipynb .

Natural End Conditions

For the first and last segment, we assume that the inner tangent is known. To find the outer tangent
according to natural end conditions, the second derivative is set to 0 at the beginning and end of the
curve.

We are looking only at the non-uniform case here, it’s easy to get to the uniform case by setting ∆i = 1.

In case you were wondering, natural end conditions are sometimes also called “relaxed” end condi-
tions.

[1]: import sympy as sp
sp.init_printing(order='grevlex')

As usual, we are getting some help from utility.py:

[2]: from utility import NamedExpression

[3]: t = sp.symbols('t')

Begin

We are starting with the first polynomial segment p0(t), with t0 ≤ t ≤ t1.

[4]: t0, t1 = sp.symbols('t:2')

The coefficients . . .

[5]: a0, b0, c0, d0 = sp.symbols('a:dbm0')

. . . multiplied with the monomial basis (page 2) give us the uniform polynomial . . .

[6]: d0 * t**3 + c0 * t**2 + b0 * t + a0

[6]: d0t3 + c0t2 + b0t + a0

. . . which we re-scale to the desired parameter range:

[7]: p0 = NamedExpression('pbm0', _.subs(t, (t - t0) / (t1 - t0)))
p0

[7]:
p0 =

d0 (t− t0)
3

(−t0 + t1)
3 +

c0 (t− t0)
2

(−t0 + t1)
2 +

b0 (t− t0)

−t0 + t1
+ a0

We need the first derivative (a.k.a velocity, a.k.a. tangent vector):

[8]: pd0 = p0.diff(t)
pd0

[8]: d
dt

p0 =
3d0 (t− t0)

2

(−t0 + t1)
3 +

c0 (2t− 2t0)

(−t0 + t1)
2 +

b0

−t0 + t1

101

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/euclidean/end-conditions-natural.ipynb
utility.py

Similar to the notebook about non-uniform Hermite splines (page 24), we are interested in the function
values and first derivatives at the control points:

x0 = p0(t0)

x1 = p0(t1)

ẋ0 = p′0(t0)

ẋ1 = p′0(t1)

[9]: equations_begin = [
p0.evaluated_at(t, t0).with_name('xbm0'),
p0.evaluated_at(t, t1).with_name('xbm1'),
pd0.evaluated_at(t, t0).with_name('xdotbm0'),
pd0.evaluated_at(t, t1).with_name('xdotbm1'),

]

To get simpler equations, we are substituting ∆0 = t1 − t0. Note that this is only for display purposes,
the calculations are still done with ti.

[10]: delta_begin = [
(t0, 0),
(t1, sp.Symbol('Delta0')),

]

[11]: for e in equations_begin:
display(e.subs(delta_begin))

x0 = a0

x1 = a0 + b0 + c0 + d0

ẋ0 =
b0

∆0

ẋ1 =
b0

∆0
+

2c0

∆0
+

3d0

∆0

[12]: coefficients_begin = sp.solve(equations_begin, [a0, b0, c0, d0])

[13]: for c, e in coefficients_begin.items():
display(NamedExpression(c, e.subs(delta_begin)))

a0 = x0

b0 = ∆0 ẋ0

c0 = −2∆0 ẋ0 − ∆0 ẋ1 − 3x0 + 3x1

d0 = ∆0 ẋ0 + ∆0 ẋ1 + 2x0 − 2x1

The second derivative (a.k.a. acceleration) . . .

[14]: pdd0 = pd0.diff(t)
pdd0

[14]: d2

dt2 p0 =
3d0 (2t− 2t0)

(−t0 + t1)
3 +

2c0

(−t0 + t1)
2

. . . at the beginning of the curve (t = t0) . . .

102

[15]: pdd0.evaluated_at(t, t0)

[15]: d2

dt2 p0

∣∣∣∣
t=t0

=
2c0

(−t0 + t1)
2

. . . is set to zero . . .

[16]: sp.Eq(_.expr, 0).subs(coefficients_begin)

[16]: 2 (2t0 ẋ0 − 2t1 ẋ0 + t0 ẋ1 − t1 ẋ1 − 3x0 + 3x1)

(−t0 + t1)
2 = 0

. . . leading to an expression for the initial tangent vector:

[17]: xd0 = NamedExpression.solve(_, 'xdotbm0')
xd0.subs(delta_begin)

[17]: ẋ0 = −∆0 ẋ1 + 3x0 − 3x1

2∆0

This can also be written as

ẋ0 =
3 (x1 − x0)

2∆0
− ẋ1

2
.

End

If a spline has N vertices, it has N − 1 polynomial segments and the last polynomial segment is
pN−2(t), with tN−2 ≤ t ≤ tN−1. To simplify the notation a bit, let’s assume we have N = 10 vertices,
which makes p8 the last polynomial segment. The following steps are very similar to the above
derivation of the start conditions.

[18]: a8, b8, c8, d8 = sp.symbols('a:dbm8')

[19]: t8, t9 = sp.symbols('t8:10')

[20]: d8 * t**3 + c8 * t**2 + b8 * t + a8

[20]: d8t3 + c8t2 + b8t + a8

[21]: p8 = NamedExpression('pbm8', _.subs(t, (t - t8) / (t9 - t8)))
p8

[21]:
p8 =

d8 (t− t8)
3

(−t8 + t9)
3 +

c8 (t− t8)
2

(−t8 + t9)
2 +

b8 (t− t8)

−t8 + t9
+ a8

[22]: pd8 = p8.diff(t)
pd8

[22]: d
dt

p8 =
3d8 (t− t8)

2

(−t8 + t9)
3 +

c8 (2t− 2t8)

(−t8 + t9)
2 +

b8

−t8 + t9

103

xN−2 = pN−2(tN−2)

xN−1 = pN−2(tN−1)

ẋN−2 = p′N−2(tN−2)

ẋN−1 = p′N−2(tN−1)

[23]: equations_end = [
p8.evaluated_at(t, t8).with_name('xbm8'),
p8.evaluated_at(t, t9).with_name('xbm9'),
pd8.evaluated_at(t, t8).with_name('xdotbm8'),
pd8.evaluated_at(t, t9).with_name('xdotbm9'),

]

We define ∆8 = t9 − t8:

[24]: delta_end = [
(t8, 0),
(t9, sp.Symbol('Delta8')),

]

[25]: for e in equations_end:
display(e.subs(delta_end))

x8 = a8

x9 = a8 + b8 + c8 + d8

ẋ8 =
b8

∆8

ẋ9 =
b8

∆8
+

2c8

∆8
+

3d8

∆8

[26]: coefficients_end = sp.solve(equations_end, [a8, b8, c8, d8])

[27]: for c, e in coefficients_end.items():
display(NamedExpression(c, e.subs(delta_end)))

a8 = x8

b8 = ∆8 ẋ8

c8 = −2∆8 ẋ8 − ∆8 ẋ9 − 3x8 + 3x9

d8 = ∆8 ẋ8 + ∆8 ẋ9 + 2x8 − 2x9

This time, the second derivative . . .

[28]: pdd8 = pd8.diff(t)
pdd8

[28]: d2

dt2 p8 =
3d8 (2t− 2t8)

(−t8 + t9)
3 +

2c8

(−t8 + t9)
2

. . . at the end of the last segment (t = t9) . . .

[29]: pdd8.evaluated_at(t, t9)

[29]: d2

dt2 p8

∣∣∣∣
t=t9

=
3d8 (−2t8 + 2t9)

(−t8 + t9)
3 +

2c8

(−t8 + t9)
2

104

. . . is set to zero . . .

[30]: sp.Eq(_.expr, 0).subs(coefficients_end)

[30]: 3 (−2t8 + 2t9) (−t8 ẋ8 + t9 ẋ8 − t8 ẋ9 + t9 ẋ9 + 2x8 − 2x9)

(−t8 + t9)
3 +

2 (2t8 ẋ8 − 2t9 ẋ8 + t8 ẋ9 − t9 ẋ9 − 3x8 + 3x9)

(−t8 + t9)
2 = 0

. . . leading to an expression for the final tangent vector:

[31]: xd9 = NamedExpression.solve(_, 'xdotbm9')
xd9.subs(delta_end)

[31]: ẋ9 = −∆8 ẋ8 + 3x8 − 3x9

2∆8

Luckily, that’s symmetric to the result we got above.

The equation can be generalized to

ẋN−1 =
3 (xN−1 − xN−2)

2∆N−2
− ẋN−2

2
.

Example

We are showing a one-dimensional example where 3 time/value pairs are given. The slope for the
middle value is given, the begin and end slopes are calculated using the “natural” end conditions as
calculated above.

[32]: values = 2, 2, 1
times = 0, 4, 5
slope = 2

We are using a few helper functions from helper.py for plotting:

[33]: from helper import plot_sympy, grid_lines

[34]: x0, x1 = sp.symbols('xbm0:2')
x8, x9 = sp.symbols('xbm8:10')
xd1 = sp.symbols('xdotbm1')
xd8 = sp.symbols('xdotbm8')

[35]: begin = p0.subs(coefficients_begin).subs_symbols(xd0).subs({
t0: times[0],
t1: times[1],
x0: values[0],
x1: values[1],
xd1: slope,

}).with_name(r'p_\text{begin}')
end = p8.subs(coefficients_end).subs_symbols(xd9).subs({

t8: times[1],
t9: times[2],
x8: values[1],
x9: values[2],

(continues on next page)

105

helper.py

(continued from previous page)

xd8: slope,
}).with_name(r'p_\text{end}')

[36]: plot_sympy(
(begin.expr, (t, times[0], times[1])),
(end.expr, (t, times[1], times[2])))

grid_lines(times, [1, 2])

[37]: begin.diff(t).evaluated_at(t, times[0])

[37]: d
dt

pbegin

∣∣∣∣
t=0

= −1

[38]: end.diff(t).evaluated_at(t, times[-1])

[38]: d
dt

pend

∣∣∣∣
t=5

= −5
2

Bézier Control Points

Up to now we have assumed that we know one of the tangent vectors and want to find the other
tangent vector in order to construct a Hermite spline (page 13). What if we want to construct a Bézier
spline (page 39) instead?

If the inner Bézier control points x̃(−)1 and x̃(+)
N−2 are given, we can insert the equations for the tangent

vectors from the notebook about non-uniform Bézier splines (page 54) into our tangent vector equations
from above and solve them for the outer control points x̃(+)

0 and x̃(−)N−1, respectively.

[39]: xtilde0, xtilde1 = sp.symbols('xtildebm0^(+) xtildebm1^(-)')

[40]: NamedExpression.solve(xd0.subs({
xd0.name: 3 * (xtilde0 - x0) / (t1 - t0),
xd1: 3 * (x1 - xtilde1) / (t1 - t0),

}), xtilde0)

[40]:
x̃(+)

0 =
x0

2
+

x̃(−)1
2

106

[41]: xtilde8, xtilde9 = sp.symbols('xtildebm8^(+) xtildebm9^(-)')

[42]: NamedExpression.solve(xd9.subs({
xd8: 3 * (xtilde8 - x8) / (t9 - t8),
xd9.name: 3 * (x9 - xtilde9) / (t9 - t8),

}), xtilde9)

[42]:
x̃(−)9 =

x9

2
+

x̃(+)
8
2

Note that all ∆i cancel each other out (as well as the inner vertices x1 and xN−2) and we get very
simple equations for the “natural” end conditions:

x̃(+)
0 =

x0 + x̃(−)1
2

x̃(−)N−1 =
xN−1 + x̃(+)

N−2
2

. doc/euclidean/end-conditions-natural.ipynb ends here.

The following section was generated from doc/euclidean/piecewise-monotone.ipynb .

1.9 Piecewise Monotone Interpolation

When interpolating a sequence of one-dimensional data points, it is sometimes desirable to limit the
interpolant between any two adjacent data points to a monotone function. This makes sure that there
are no overshoots beyond the given data points. In other words, if the data points are within certain
bounds, all interpolated data will also be within those same bounds. It follows that if all data points
are non-negative, interpolated data will be non-negative as well. Furthermore, this makes sure that
monotone data leads to a monotone interpolant (see also Monotone Interpolation (page 114) below).

A Python implementation of piecewise monotone one-dimensional cubic splines is available in the
splines.PiecewiseMonotoneCubic (page 162) class.

The SciPy package provides a similar tool with the pchip_interpolate()27 function and the PchipInter-
polator28 class (see below for more details).

The 3D animation software Blender29 provides an Auto Clamped30 property for creating piecewise
monotone animation cuves.

Examples

[1]: import matplotlib.pyplot as plt
import numpy as np

[2]: import splines

We use a few helper functions from helper.py for plotting:

[3]: from helper import plot_spline_1d, grid_lines

27 https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.pchip_interpolate.html
28 https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PchipInterpolator.html
29 https://www.blender.org
30 https://docs.blender.org/manual/en/dev/editors/graph_editor/fcurves/properties.html#editors-graph-fcurves-settings-handles

107

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/euclidean/end-conditions-natural.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/euclidean/piecewise-monotone.ipynb
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.pchip_interpolate.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PchipInterpolator.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PchipInterpolator.html
https://www.blender.org
https://docs.blender.org/manual/en/dev/editors/graph_editor/fcurves/properties.html#editors-graph-fcurves-settings-handles
helper.py

[4]: values = 0, 3, 3, 7
times = 0, 3, 8, 10, 11

Let’s compare a piecewise monotone spline with a Catmull–Rom spline (page 55) and a natural spline
(page 29):

[5]: plot_spline_1d(
splines.PiecewiseMonotoneCubic(values, times, closed=True),
label='piecewise monotone')

plot_spline_1d(
splines.CatmullRom(values, times, endconditions='closed'),
label='Catmull–Rom')

plot_spline_1d(
splines.Natural(values, times, endconditions='closed'),
label='natural spline')

plt.legend()
grid_lines(times)

[6]: def plot_piecewise_monotone(*args, **kwargs):
s = splines.PiecewiseMonotoneCubic(*args, **kwargs)
plot_spline_1d(s)
grid_lines(x=s.grid)

[7]: plot_piecewise_monotone([0, 1, 3, 2, 1])

108

Providing Slopes

By default, appropriate slopes are calculated automatically. However, those slopes can be overridden
if desired. Specifying None falls back to the auto-generated default.

[8]: plot_piecewise_monotone([0, 1, 3, 2, 1], slopes=[None, 0, None, -3, -1.5])

Slopes that would lead to non-monotone segments are prohibited:

[9]: try:
plot_piecewise_monotone([0, 1, 3, 2, 1], slopes=[None, 4, None, None, None])

except Exception as e:
print(e)
assert 'too steep' in str(e)

else:
assert False

Slope too steep: 4

109

Generating and Modifying the Slopes at Segment Boundaries

In this paper we derive necessary and sufficient conditions for a cubic to be monotone in
an interval. These conditions are then used to develop an algorithm which constructs a
C 1 monotone piecewise cubic interpolant to monotone data. The curve produced contains
no extraneous “bumps” or “wiggles”, which makes it more readily acceptable to scientists
and engineers.

—[FC80], section 1: “Introduction”

[FC80] derives necessary and sufficient conditions for a cubic curve segment to be monotone, based
on the slopes of the secant lines (i.e. the piecewise linear interpolant) and their endpoint derivatives.
Furthermore, they provide a two-step algorithm to generate piecewise monotone cubics:

1. calculate initial tangents (with whatever method)

2. tweak the ones that don’t fulfill the monotonicity conditions

To implement Step 1 we have found the standard three-point difference formula to be
satisfactory for d2, d3, · · ·, dn−1.

—[FC80], section 4: “Monotone piecewise cubic interpolation algorithm”

This is what de Boor [[dB78], p. 53] calls cubic Bessel interpolation, in which the interior
derivatives are set using the standard three point difference formula.

—[FC80], section 5: “Numerical examples”

In the 2001 edition of [dB78], piecewise cubic Bessel interpolation is defined on page 42. We have already
seen the standard three-point difference in the tangent vectors of non-uniform Catmull–Rom splines (page 72).

For the following equations, we define the slope of the secant lines as

Si =
xi+1 − xi
ti+1 − ti

.

We use xi to represent the given data points and and ti to represent the corresponding parameter
values. The slope at those values is represented by ẋi.

Note

In the literature, the parameter values are often represented by xi, so try not to be confused!

Based on [FC80], [DEH89] provides (in equation 4.2) an algorithm for modifying the initial slopes to
ensure monotonicity. Adapted to our notation, it looks like this:

ẋi ←


min(max(0, ẋi), 3 min(|Si−1|, |Si|)), σi > 0,
max(min(0, ẋi),−3 min(|Si−1|, |Si|)), σi < 0,
0, σi = 0,

where σi = sgn(Si) if SiSi−1 > 0 and σi = 0 otherwise.

This algoritm is implemented in the splines.PiecewiseMonotoneCubic (page 162) class.

110

PCHIP/PCHIM

A different approach for obtaining slopes that ensure monotonicity is described in [FB84], equation
(5):

G(S1, S2, h1, h2) =

{ S1S2
αS2+(1−α)S1

if S1S2 > 0,

0 otherwise,

where

α =
1
3

(
1 +

h2

h1 + h2

)
=

h1 + 2h2

3(h1 + h2)
.

The function G can be used to calculate the slopes at segment boundaries, given the slopes Si of the
neighboring secant lines and the neighboring parameter intervals hi = ti+1 − ti.

Let’s define this using SymPy31 for later reference:

[10]: import sympy as sp

[11]: h1, h2 = sp.symbols('h1:3')
S1, S2 = sp.symbols('S1:3')

[12]: alpha = (h1 + 2 * h2) / (3 * (h1 + h2))
G1 = (S1 * S2) / (alpha * S2 + (1 - alpha) * S1)

This has been implemented in a Fortran32 package described in [Fri82], which has coined the acronym
PCHIP, originally meaning Piecewise Cubic Hermite Interpolation Package.

It features software to produce a monotone and “visually pleasing” interpolant to mono-
tone data.

—[Fri82]

The package contains many Fortran subroutines, but the one that’s relevant here is PCHIM, which is
short for Piecewise Cubic Hermite Interpolation to Monotone data.

The source code (including some later modifications) is available at https://people.sc.fsu.edu/
~jburkardt/f77_src/pchip/pchip.html. This is the code snippet responsible for calculating the slopes:

C
C USE BRODLIE MODIFICATION OF BUTLAND FORMULA.
C

45 CONTINUE
HSUMT3 = HSUM+HSUM+HSUM
W1 = (HSUM + H1)/HSUMT3
W2 = (HSUM + H2)/HSUMT3
DMAX = MAX(ABS(DEL1), ABS(DEL2))
DMIN = MIN(ABS(DEL1), ABS(DEL2))
DRAT1 = DEL1/DMAX
DRAT2 = DEL2/DMAX
D(1,I) = DMIN/(W1*DRAT1 + W2*DRAT2)

This looks different from the function G defined above, but if we transform the Fortran code into math
. . .

31 https://www.sympy.org/
32 https://en.wikipedia.org/wiki/Fortran

111

https://www.sympy.org/
https://en.wikipedia.org/wiki/Fortran
https://people.sc.fsu.edu/~jburkardt/f77_src/pchip/pchip.html
https://people.sc.fsu.edu/~jburkardt/f77_src/pchip/pchip.html

[13]: HSUM = h1 + h2

[14]: W1 = (HSUM + h1) / (3 * HSUM)
W2 = (HSUM + h2) / (3 * HSUM)

. . . and use separate expressions depending on which of the neighboring secant slopes is larger . . .

[15]: G2 = S1 / (W1 * S1 / S2 + W2 * S2 / S2)
G3 = S2 / (W1 * S1 / S1 + W2 * S2 / S1)

. . . we see that the two cases are mathematically equivalent . . .

[16]: assert sp.simplify(G2 - G3) == 0

. . . and they are in fact also equivalent to the aforementioned equation from [FB84]:

[17]: assert sp.simplify(G1 - G2) == 0

Presumably, the Fortran code uses the larger one of the pair of secant slopes in the denominator in
order to reduce numerical errors if one of the slopes is very close to zero.

Yet another variation of this theme is shown in [Mol04], section 3.4, which defines the slope dk as a
weighted harmonic mean of the two neighboring secant slopes:

w1 + w2

dk
=

w1

δk−1
+

w2

δk
,

with w1 = 2hk + hk−1 and w2 = hk + 2hk−1. Using the notation from above, dk = ẋk and δk = Sk.

Again, when defining this using SymPy . . .

[18]: w1 = 2 * h2 + h1
w2 = h2 + 2 * h1

[19]: G4 = (w1 + w2) / (w1 / S1 + w2 / S2)

. . . we can see that it is actually equivalent to the previous equations:

[20]: assert sp.simplify(G4 - G1) == 0

The PCHIM algorithm, which is nowadays known by the less self-explanatory name PCHIP, is available
in the SciPy package in form of the pchip_interpolate()33 function and the PchipInterpolator34 class.

[21]: from scipy.interpolate import PchipInterpolator

33 https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.pchip_interpolate.html
34 https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PchipInterpolator.html

112

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.pchip_interpolate.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PchipInterpolator.html

More Examples

To illustrate the differences between the two approaches mentioned above, let’s plot a few examples.
Both methods are piecewise monotone, but their exact shape is slightly different. Decide for yourself
which one is more “visually pleasing”!

[22]: def compare_pchip(values, times):
plot_times = np.linspace(times[0], times[-1], 100)
plt.plot(

plot_times,
PchipInterpolator(times, values)(plot_times),
label='PCHIP')

plt.plot(
plot_times,
splines.PiecewiseMonotoneCubic(values, times).evaluate(plot_times),
label='PiecewiseMonotoneCubic')

plt.legend()
grid_lines(x=times)

[23]: compare_pchip([0, 0, 1.5, 4, 4], [-1, 0, 1, 8, 9])

[24]: compare_pchip([0, 0, 1.5, 4, 4], [-1, 0, 6, 8, 9])

There is even a slight difference in the uniform case:

113

[25]: compare_pchip([0, 0, 3.3, 4, 4], [-1, 0, 1, 2, 3])

[26]: compare_pchip([0, 0, 0.7, 4, 4], [-1, 0, 1, 2, 3])

For differences at the beginning and the end of the curve, see the section about end conditions (page 115).

Monotone Interpolation

When using the aforementioned piecewise monotone algorithms with monotone data, the whole in-
terpolant will be monotone.

The class splines.MonotoneCubic (page 162) works very much the same as splines.PiecewiseMonotoneCubic
(page 162), except that it only allows monotone data values.

Since the resulting interpolation function is monotone, it can be inverted. Given a function value, the
method .get_time() (page 162) can be used to find the associated parameter value.

[27]: s = splines.MonotoneCubic([0, 2, 2, 6, 6], grid=[0, 2, 3, 6, 8])

[28]: probes = 1, 3, 5

[29]: fig, ax = plt.subplots()
plot_spline_1d(s)

(continues on next page)

114

(continued from previous page)

ax.scatter(s.get_time(probes), probes)
grid_lines(x=s.grid)

If the solution is not unique (i.e. on plateaus), the return value is None:

[30]: assert s.get_time(2) is None

Closed curves are obviously not possible:

[31]: try:
splines.MonotoneCubic([0, 2, 2, 6, 6], closed=True)

except Exception as e:
print(e)
assert 'closed' in str(e)

else:
assert False

The "closed" argument is not allowed

End Conditions

The usual end conditions (page 101) don’t necessarily lead to a monotone interpolant, therefore we need
to come up with custom end conditions that preserve monotonicity.

For the end derivatives, the noncentered three point difference formula may be used, al-
though it is sometimes necessary to modify d1 and/or dn if the signs are not appropriate.
In these cases we have obtained better results setting d1 or dn equal to zero, rather than
equal to the slope of the secant line.

—[FC80], section 4: “Monotone piecewise cubic interpolation algorithm”

[FC80] recommends using the noncentered three point difference formula, however, it fails to mention what
that actually is. Luckily, we can have a look at the code at https://people.sc.fsu.edu/~jburkardt/f77_
src/pchip/pchip.html:

C
C SET D(1) VIA NON-CENTERED THREE-POINT FORMULA, ADJUSTED TO BE
C SHAPE-PRESERVING.
C

HSUM = H1 + H2
(continues on next page)

115

https://people.sc.fsu.edu/~jburkardt/f77_src/pchip/pchip.html
https://people.sc.fsu.edu/~jburkardt/f77_src/pchip/pchip.html

(continued from previous page)

W1 = (H1 + HSUM)/HSUM
W2 = -H1/HSUM
D(1,1) = W1*DEL1 + W2*DEL2
IF (PCHST(D(1,1),DEL1) .LE. ZERO) THEN

D(1,1) = ZERO
ELSE IF (PCHST(DEL1,DEL2) .LT. ZERO) THEN

C NEED DO THIS CHECK ONLY IF MONOTONICITY SWITCHES.
DMAX = THREE*DEL1
IF (ABS(D(1,1)) .GT. ABS(DMAX)) D(1,1) = DMAX

ENDIF

The function PCHST is a simple sign test:

PCHST = SIGN(ONE,ARG1) * SIGN(ONE,ARG2)
IF ((ARG1.EQ.ZERO) .OR. (ARG2.EQ.ZERO)) PCHST = ZERO

This implementation seems to be used by “modern” PCHIP/PCHIM implementations as well.

This defines the pchip slopes at interior breakpoints, but the slopes d1 and dn at either end
of the data interval are determined by a slightly different, one-sided analysis. The details
are in pchiptx.m.

—[Mol04], section 3.4

Section 3.6 of [Mol04] shows the implementation of pchiptx.m:

function d = pchipend(h1,h2,del1,del2)
% Noncentered, shape-preserving, three-point formula.

d = ((2*h1+h2)*del1 - h1*del2)/(h1+h2);
if sign(d) ~= sign(del1)

d = 0;
elseif (sign(del1)~=sign(del2))&(abs(d)>abs(3*del1))

d = 3*del1;
end

Apparently, this is the same as the above Fortran implementation.

The class scipy.interpolate.PchipInterpolator35 uses the same implementation (ported to Python)36.

This implementation ensures monotonicity, but it might seem a bit strange that for calculating the first
slope, the second slope is not directly taken into account.

Another awkward property is that for calculating the inner slopes, only the immediately neighboring
secant slopes and time intervals are considered, while for calculating the initial and final slopes, both
the neighboring segment and the one next to it are considered. This makes the curve less locally
controlled at the ends compared to the middle.

[32]: def plot_pchip(values, grid, **kwargs):
pchip = PchipInterpolator(grid, values)
times = np.linspace(grid[0], grid[-1], 100)
plt.plot(times, pchip(times), **kwargs)
plt.scatter(grid, pchip(grid))
grid_lines(x=grid)

35 https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PchipInterpolator.html
36 https://github.com/scipy/scipy/blob/v1.6.1/scipy/interpolate/_cubic.py#L237-L250

116

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PchipInterpolator.html
https://github.com/scipy/scipy/blob/v1.6.1/scipy/interpolate/_cubic.py#L237-L250

[33]: plot_pchip([0, 1, 0], [0, 1, 2])
plot_pchip([0, 1, 1], [0, 1, 2])
grid_lines([0, 1, 2])

[34]: plot_pchip([0, 1, 0], [0, 1, 4])
plot_pchip([0, 1, 0], [0, 1, 1.5])
grid_lines([0, 1, 1.5, 4])

In both of the above examples, the very left slope depends on properties of the very right segment.

The slope at t = 1 is clearly zero in both cases and apart from that fact, the shape of the curve at t > 1
should, arguably, not have any influence on the slope at t = 0.

To provide an alternative to this behavior, the class splines.PiecewiseMonotoneCubic (page 162) uses end
conditions that depend on the slope at t = 1, but not explicitly on the shape of the curve at t > 1:

[35]: plot_piecewise_monotone([0, 1, 0], grid=[0, 1, 1.5])
plot_piecewise_monotone([0, 1, 0], grid=[0, 1, 4])
grid_lines(x=[0, 1, 1.5, 4])

117

The initial and final slopes of splines.PiecewiseMonotoneCubic (page 162) are implemented like this:

[36]: def monotone_end_condition(inner_slope, secant_slope):
if secant_slope < 0:

return -monotone_end_condition(-inner_slope, -secant_slope)
assert 0 <= inner_slope <= 3 * secant_slope
if inner_slope <= secant_slope:

return 3 * secant_slope - 2 * inner_slope
else:

return (3 * secant_slope - inner_slope) / 2

Even More Examples

The following example plots show different slopes at the beginning and end due to different end
conditions.

[37]: compare_pchip([1, 2, 1], [1, 3.5, 5])

[38]: compare_pchip([1, 2, 3.5, 4, 3], [1, 1.5, 4, 5, 6])

118

[39]: compare_pchip([1, 2, 1.9, 1], [1, 3, 4, 6])

. doc/euclidean/piecewise-monotone.ipynb ends here.

2 Rotation Splines

The following section was generated from doc/rotation/quaternions.ipynb .

2.1 Quaternions

We are interested in unit quaternions (see below), because they are a very useful representation of
rotations. But before we go into that, we should probably mention what a quaternion37 is. We don’t
need all the details, we just need to know a few facts (without burdening ourselves too much with
mathematical rigor):

• Quaternions live in the four-dimensional Euclidean space R4. Each quaternion has exactly one
corresponding element of R4 and vice versa.

• Unlike elements of R4, quaternions support a special kind of quaternion multiplication.

• Quaternion multiplication is weird. The order of operands matters (i.e. multiplication is non-
commutative38).

37 https://en.wikipedia.org/wiki/Quaternion
38 https://en.wikipedia.org/wiki/Noncommutative

119

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/euclidean/piecewise-monotone.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/rotation/quaternions.ipynb
https://en.wikipedia.org/wiki/Quaternion
https://en.wikipedia.org/wiki/Noncommutative
https://en.wikipedia.org/wiki/Noncommutative

A Python implementation is available in the class splines.quaternion.Quaternion (page 163).

Quaternion Representations

There are multiple equivalent ways to represent quaternions. Their original algebraic representation
is

q = w + xi + yj + zk,

where i2 = j2 = k2 = ijk = −1. It it important to note that the order in which the basic quaternions
i, j and k are multiplied matters: ij = k, ji = −k (i.e. their multiplication is anticommutative39). The
information given so far should be sufficient to derive quaternion multiplication, but let’s not do that
right now. Quaternions can also be represented as pairs containing a scalar and a 3D vector:

q = (w,~v) = (w, (x, y, z))

Sometimes, the scalar and vector parts are also called “real” and “imaginary” parts, respectively. The
four components can also be displayed as simple 4-tuples, which can be interpreted as coordinates of
the four-dimensional Euclidean space R4:

q = (w, x, y, z) or q = (x, y, z, w)

The order of components can be chosen arbitrarily. In mathematical textbooks, the order (w, x, y, z) is
often preferred (and sometimes written as (a, b, c, d)). In numerical software implementations, how-
ever, the order (x, y, z, w) is more common (probably because it is memory-compatible with 3D vectors
(x, y, z)). In the Python class splines.quaternion.Quaternion (page 163), these representations are avail-
able via the attributes scalar (page 163), vector (page 163), wxyz (page 164) and xyzw (page 164).

There are even more ways to represent quaterions, for example as 2x2 complex matrices or as 4x4 real
matrices, see for example [McD10].

Unit Quaternions

Quite simply, unit quaternions are the set of all quaternions whose distance to the origin (0, (0, 0, 0))
equals 1. In R3, all elements with unit distance from the origin form the unit sphere (a.k.a. S2), which
is a two-dimensional curved space. Since quaternions inhabit R4, the unit quaternions form the unit
hypersphere (a.k.a. S3), which is a three-dimensional curved space.

One important unit quaternion is (1, (0, 0, 0)), sometimes written as 1, which corresponds to the real
number 1.

A Python implementation of unit quaternions is available in the class splines.quaternion.UnitQuaternion
(page 164).

39 https://en.wikipedia.org/wiki/Anticommutative_property

120

https://en.wikipedia.org/wiki/Anticommutative_property

Unit Quaternions as Rotations

Given a (normalized) rotation axis ~n and a rotation angle α (in radians), we can create a corresponding
quaternion (which will have unit length):

q =
(

cos
α

2
,~n sin

α

2

)
Unit quaternions are a double cover over the rotation group (a.k.a. SO(3)40), which means that each
rotation can be associated with two distinct quaternions. More concretely, the antipodal points q and
−q represent the same rotation.

More details can be found on Wikipedia41.

To get a bit of intuition, let’s plot a few quaternion rotations (with the help of helper.py).

[1]: from helper import angles2quat, plot_rotation

The quaternion 1 represents “no rotation at all”.

[2]: identity = angles2quat(0, 0, 0)
identity

[2]: UnitQuaternion(scalar=1.0, vector=(0.0, 0.0, 0.0))

[3]: a = angles2quat(90, 0, 0)
b = angles2quat(0, 35, 0)
c = angles2quat(0, 0, 45)

[4]: plot_rotation({
'identity = 1': identity,
'a': a,
'b': b,
'c': c,

});

Axes Conventions

When converting between rotation angles (see Euler/Tait–Bryan angles42) and unit quaternions, we
can freely choose from a multitude of axes conventions43. Here we choose a (global) coordinate system
where the x-axis points towards the right margin of the page and the y-axis points towards the top of
the page. We are using a right-handed coordinate system, which leaves the z-axis pointing out of the
page, towards the viewer. The helper function angles2quat() takes three angles (in degrees) which
are applied in this order:

40 https://en.wikipedia.org/wiki/3D_rotation_group
41 https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation
42 https://en.wikipedia.org/wiki/Euler_angles
43 https://en.wikipedia.org/wiki/Axes_conventions

121

https://en.wikipedia.org/wiki/3D_rotation_group
https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation
helper.py
https://en.wikipedia.org/wiki/Euler_angles
https://en.wikipedia.org/wiki/Axes_conventions

• azimuth: rotation around the (global) z-axis

• elevation: rotation around the (previously rotated local) x-axis

• roll: rotation around the (previously rotated local) y-axis

This is equivalent to applying the angles in the opposite order, but using a global frame of reference
for each rotation.

The sign of the rotation angles always follows the right-hand rule44.

Quaternion Multiplication

As mentioned above, quaternion multiplication (sometimes called Hamilton product) is noncommuta-
tive, i.e. the order of operands matters. When using unit quaternions to represent rotations, quaternion
multiplication can be used to apply rotations to other rotations. Given a rotation q0, we can apply an-
other rotation q1 by left-multiplication: q1q0. In other words, applying a rotation of q0 followed by a
rotation of q1 is equivalent to applying a single rotation q1q0. Note that q1 represents a rotation in the
global frame of reference.

When dealing with local frames of reference, the order of multiplications has to be reversed. Given a
rotation q2, which describes a new local coordinate system, we can apply a local rotation q3 (relative
to this new coordinate system) by right-multiplication: q2q3. In other words, applying a rotation of
q2 followed by a rotation of q3 (relative to the local coordinate system defined by q2) is equivalent to
applying a single rotation q2q3.

In general, changing the order of rotations changes the resulting rotation (qmqn 6= qnqm):

[5]: plot_rotation({'ab': a * b, 'ba': b * a});

However, there is an exception when all rotation axes are the same, in which case the rotation angles
can simply be added (in arbitrary order, of course).

The quaternion 1 = (1, (0, 0, 0)) is the identity element with regards to quaternion multiplication. A
multiplication with this (on either side) leads to an unchanged rotation.

Inverse

The multiplicative inverse of a quaternion is written as q−1. When talking about rotations, this oper-
ation leads to a new rotation with the same rotation axis but with negated angle (or equivalently, the
same angle with a flipped rotation axis).

[6]: plot_rotation({'b': b, 'b^{-1}': b.inverse()});

44 https://en.wikipedia.org/wiki/Right-hand_rule#Rotations

122

https://en.wikipedia.org/wiki/Right-hand_rule#Rotations

By multiplying a rotation with its inverse, the original rotation can be undone: qq−1 = q−1q = 1. Since
both operands have the same rotation axis, the order doesn’t matter in this case.

For unit quaternions, the inverse q−1 equals the conjugate q. The conjugate of a quaternion is con-
structed by negating its vector part (and keeping its scalar part unchanged). This can be achieved by
negating the rotation axis ~n. Alternatively, we can negate the rotation angle, since sin(−φ) = − sin(φ)
(antisymmetric) and cos(−φ) = cos(φ) (symmetric).

q = (w,−~v) =
(

cos
α

2
,−~n sin

α

2

)
=

(
cos
−α

2
,~n sin

−α

2

)

Relative Rotation (Global Frame of Reference)

Given two rotations q0 and q1, we can try to find a third rotation q0,1 that rotates q0 into q1. Since we
are considering the global frame of reference, q0,1 must be left-multiplied with q0:

q0,1q0 = q1

Now we can right-multiply both sides with q0
−1:

q0,1q0q0
−1 = q1q0

−1

q0q0
−1 cancels out and we get:

q0,1 = q1q0
−1

Relative Rotation (Local Frame of Reference)

If q0,1 is supposed to be a rotation in the local frame of q0, we have to change the order of multiplication:

q0q0,1 = q1

Now we can left-multiply both sides with q0
−1:

q0
−1q0q0,1 = q0

−1q1

q0
−1q0 cancels out and we get:

q0,1 = q0
−1q1

123

Exponentiation

Raising a unit quaternion to an integer exponent simply means applying the same rotation multiple
times:

[7]: plot_rotation({
'$a^0 = 1$': a**0,
'$a^1 = a$': a**1,
'$a^2 = aa$': a**2,
'$a^3 = aaa$': a**3,

});

It shouldn’t come as a surprise that q0 = 1 and q1 = q.

Using an exponent of −1 is equivalent to taking the inverse (see above (page 122)), negative integer
exponents apply the inverse rotation multiple times. Non-integer exponents lead to partial rotations,
with the exponent k being proportional to the rotation angle. The rotation axis ~n is unchanged by
exponentiation.

qk =

(
cos

kα

2
,~n sin

kα

2

)
[8]: plot_rotation({

'$a^1 = a$': a**1,
'$a^{0.5}$': a**0.5,
'$a^0 = 1$': a**0,
'$a^{-0.5}$': a**-0.5,

});

Negation

A quaternion can be negated by negating all 4 of its components. This corresponds to flipping its ori-
entation in 4D space (but keeping its direction and length). For unit quaternions, this means selecting
the diametrically opposite (antipodal) point on the unit hypersphere.

Due to the double cover property mentioned above, negating a unit quaternion doesn’t change the
rotation it is representing.

[9]: plot_rotation({'c': c, '$-c$': -c});

124

One way to negate the scalar part of a unit quaternion is to add π to the argument of the cosine
function, since cos(φ + π) = − cos(φ). Because only half of the rotation appears in the argument of
the cosine, we have to add 2π to the rotation angle α, which brings us back to the original rotation.
Adding 2π to the rotation angle also negates the vector part of the unit quaternion (since sin(φ + π) =
− sin(φ)), assuming the rotation axis ~n stays unchanged.

−q = (−w,−~v) =
(

cos
α + 2π

2
,~n sin

α + 2π

2

)
. doc/rotation/quaternions.ipynb ends here.

The following section was generated from doc/rotation/slerp.ipynb .

2.2 Spherical Linear Interpolation (Slerp)

The term “Slerp” for “spherical linear interpolation” (a.k.a. “great arc in-betweening”) has been coined
by [Sho85] (section 3.3). It describes an interpolation (with constant angular velocity) along the shortest
path (a.k.a. geodesic) on the unit hypersphere between two quaternions q1 and q2. It is defined as:

Slerp(q1, q2; u) = q1

(
q1
−1q2

)u

The parameter u moves from 0 (where the expression simplifies to q1) to 1 (where the expression
simplifies to q2).

The Wikipedia article for Slerp45 provides four equivalent ways to describe the same thing:

Slerp(q0, q1; t) = q0

(
q0
−1q1

)t

= q1

(
q1
−1q0

)1−t

=
(

q0q1
−1
)1−t

q1

=
(

q1q0
−1
)t

q0

[Sho85] also provides an alternative formulation (attributed to Glenn Davis):

Slerp(q1, q2; u) =
sin(1− u)θ

sin θ
q1 +

sin uθ

sin θ
q2,

where the dot product q1 · q2 = cos θ.

Latter equation works for unit-length elements of any arbitrary-dimensional inner product space (i.e. a
vector space that also has an inner product), while the preceding equations only work for quaternions.

The Slerp function for quaternions is quite easy to implement . . .
45 https://en.wikipedia.org/wiki/Slerp#Quaternion_Slerp

125

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/rotation/quaternions.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/rotation/slerp.ipynb
https://en.wikipedia.org/wiki/Slerp#Quaternion_Slerp

[1]: def slerp(one, two, t):
"""Spherical Linear intERPolation."""
return (two * one.inverse())**t * one

. . . but for your convenience an implementation is also provided in splines.quaternion.slerp() (page 165).

Derivation

Before looking at the general case Slerp(q0, q1; t), which interpolates from q0 to q1, let’s look at the
much simpler case of interpolating from the identity 1 to some unit quaternion q.

1 = (1, (0, 0, 0))

q =
(

cos
α

2
,~n sin

α

2

)
To move along the great arc from 1 to q, we simply have to change the angle from 0 to α while the
rotation axis ~n stays unchanged.

Slerp(1, q; t) =
(

cos
αt
2

,~n sin
αt
2

)
= qt, where 0 ≤ t ≤ 1

To generalize this to the great arc from q0 to q1, we can start with q0 and left-multiply an appropriate
Slerp using the relative rotation (global frame) (page 123) q0,1:

Slerp(q0, q1; t) = Slerp(1, q0,1; t) q0

Inserting q0,1 = q1q0
−1, we get:

Slerp(q0, q1; t) =
(

q1q0
−1
)t

q0

Alternatively, we can start with q0 and right-multiply an appropriate Slerp using the relative rotation
(local frame) (page 123) q0,1 = q0

−1q1:

Slerp(q0, q1; t) = q0 Slerp(1, q0,1; t) = q0

(
q0
−1q1

)t

We can also start with q1, swap q0 and q1 in the relative rotation and invert the parameter by using
1− t, leading to the two further alternatives mentioned above.

Visualization

First, let’s import NumPy46 . . .

[2]: import numpy as np

. . . and a few helper functions from helper.py:

[3]: from helper import angles2quat, animate_rotations, display_animation

We can now define two example quaternions:
46 https://numpy.org/

126

https://numpy.org/
helper.py

[4]: q1 = angles2quat(45, -20, -60)
q2 = angles2quat(-45, 20, 30)

Just out of curiosity, let’s use the method rotation_to() (page 164) to calculate the angle between the two
quaternions:

[5]: np.degrees(q1.rotation_to(q2).angle)

[5]: 123.9513586527906

If this angle is smaller than 180°, we know that we will get the smallest difference in rotation. If it is
larger than 180°, we can negate the second quaternion to get a smaller rotation.

[6]: ani_times = np.linspace(0, 1, 50)

We show both the original target quaternion and its antipodal point here:

[7]: ani = animate_rotations({
'slerp(q1, q2)': slerp(q1, q2, ani_times),
'slerp(q1, -q2)': slerp(q1, -q2, ani_times),

})

[8]: display_animation(ani, default_mode='reflect')

Animations can only be shown in HTML output, sorry!

slerp(q1, q2) and slerp(q1, -q2) move along the same great circle, albeit in different directions.
In total, they cover half the circumference of that great circle, which means a rotation angle of 360

degrees. Note that q2 and -q2 represent the same rotation (because of the double cover property).

Let’s create some still images:

[9]: from helper import plot_rotations

[10]: plot_times = np.linspace(0, 1, 9)

[11]: plot_rotations({
'slerp(q1, q2)': slerp(q1, q2, plot_times),
'slerp(q1, -q2)': slerp(q1, -q2, plot_times),

}, figsize=(8, 3))

127

Piecewise Slerp

The class PiecewiseSlerp (page 165) provides a rotation spline that consists of Slerp sections between
the given quaternions.

[12]: from splines.quaternion import PiecewiseSlerp

[13]: s = PiecewiseSlerp([
angles2quat(0, 0, 0),
angles2quat(90, 0, 0),
angles2quat(90, 90, 0),
angles2quat(90, 90, 90),

], grid=[0, 1, 2, 3, 6], closed=True)

[14]: ani = animate_rotations({
'piecewise Slerp': s.evaluate(np.linspace(s.grid[0], s.grid[-1], 100)),

})

[15]: display_animation(ani, default_mode='loop')

Animations can only be shown in HTML output, sorry!

Each section has its own constant angular velocity.

Slerp vs. Nlerp

While Slerp interpolates along a great arc between two quaternions, it is also possible to interpo-
late along a straight line (in four-dimensional quaternion space) between those two quaternions. The
resulting interpolant is not part of the unit hypersphere, i.e. the interpolated values are not unit quater-
nions. However, they can be normalized to become unit quaternions. This is called “normalized linear
interpolation”, in short Nlerp. The resulting interpolant travels through the same quaternions as Slerp
does, but it doesn’t do it with constant angular velocity.

[16]: from splines.quaternion import Quaternion

[17]: def lerp(one, two, t):
"""Linear intERPolation."""
one = np.asarray(one)
two = np.asarray(two)
return (1 - t) * one + t * two

[18]: def nlerp(one, two, t):
"""Normalized Linear intERPolation.

Linear interpolation in 4D quaternion space,
normalizing the result.

"""
if not np.isscalar(t):

If t is a list, return a list of unit quaternions
return [nlerp(one, two, t) for t in t]

*vector, scalar = lerp(one.xyzw, two.xyzw, t)
return Quaternion(scalar, vector).normalized()

As a first example, we try an angle below 180° . . .

128

[19]: q1 = angles2quat(-60, 10, -10)
q2 = angles2quat(80, -35, -110)

[20]: np.degrees(q1.rotation_to(q2).angle)

[20]: 174.5768498146622

. . . which we can also quickly check by means of the dot product:

[21]: assert q1.dot(q2) > 0

[22]: ani_times = np.linspace(0, 1, 50)

[23]: ani = animate_rotations({
'Slerp': slerp(q1, q2, ani_times),
'Nlerp': nlerp(q1, q2, ani_times),

})

[24]: display_animation(ani, default_mode='reflect')

Animations can only be shown in HTML output, sorry!

Again, we plot some still images:

[25]: plot_rotations({
'Slerp': slerp(q1, q2, plot_times),
'Nlerp': nlerp(q1, q2, plot_times),

}, figsize=(8, 3))

The start and end values are (by definition) the same, the middle one is also the same (due to symme-
try). And in between, there are very slight differences. Since the differences are barely visible, we can
try a more extreme example:

[26]: q3 = angles2quat(-170, 0, 45)
q4 = angles2quat(120, -90, -45)

[27]: np.degrees(q3.rotation_to(q4).angle)

[27]: 268.27205892764954

Please note that this is a rotation by an angle of far more than 180 degrees!

[28]: assert q3.dot(q4) < 0

129

[29]: ani = animate_rotations({
'Slerp': slerp(q3, q4, ani_times),
'Nlerp': nlerp(q3, q4, ani_times),

})

[30]: display_animation(ani, default_mode='reflect')

Animations can only be shown in HTML output, sorry!

[31]: plot_rotations({
'Slerp': slerp(q3, q4, plot_times),
'Nlerp': nlerp(q3, q4, plot_times),

}, figsize=(8, 3))

Now the difference is clearly visible, but depending on the application you might want to limit your
rotations to ±180 anyway, so this might not be relevant.
. doc/rotation/slerp.ipynb ends here.

The following section was generated from doc/rotation/de-casteljau.ipynb .

2.3 De Casteljau’s Algorithm With Slerp

In [Sho85], which famously introduces quaternions to the field of computer graphics, Shoemake sug-
gests to apply a variant of de Casteljau’s Algorithm (page 40) to a unit quaternion control polygon, using
Slerp (page 125) instead of linear interpolations.

[1]: def slerp(one, two, t):
"""Spherical Linear intERPolation."""
return (two * one.inverse())**t * one

We’ll also need NumPy and a few helpers from helper.py:

[2]: import numpy as np
from helper import angles2quat, plot_rotation, plot_rotations
from helper import animate_rotations, display_animation

130

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/rotation/slerp.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/rotation/de-casteljau.ipynb
helper.py

“Cubic”

[Sho85] only talks about the “cubic” case, consisting of three nested applications of Slerp. Since this
is done in a curved space, the resulting curve is of course not simply a polynomial of degree 3, but
something quite a bit more involved. Therefore, we use the term “cubic” in quotes. Shoemake doesn’t
talk about the “degree” of the curves at all, they are only called “spherical Bézier curves”.

[3]: def cubic_de_casteljau(q0, q1, q2, q3, t):
"""De Casteljau's algorithm of "degree" 3 using Slerp."""
if not np.isscalar(t):

If t is a list, return a list of unit quaternions
return [cubic_de_casteljau(q0, q1, q2, q3, t) for t in t]

slerp_0_1 = slerp(q0, q1, t)
slerp_1_2 = slerp(q1, q2, t)
slerp_2_3 = slerp(q2, q3, t)
return slerp(

slerp(slerp_0_1, slerp_1_2, t),
slerp(slerp_1_2, slerp_2_3, t),
t,

)

To illustrate this, let’s define 4 unit quaternions that we can use as control points:

[4]: q0 = angles2quat(45, 0, 0)
q1 = angles2quat(0, -40, 0)
q2 = angles2quat(0, 70, 0)
q3 = angles2quat(-45, 0, 0)

[5]: plot_rotation({'q0': q0, 'q1': q1, 'q2': q2, 'q3': q3});

[6]: plot_rotations(
cubic_de_casteljau(q0, q1, q2, q3, np.linspace(0, 1, 9)),
figsize=(8, 1))

We can see that the curve starts with the first rotation and ends with the last one. The two middle
control quaternions q1 and q2 influence the shape of the rotation curve but they are not part of the
interpolant themselves.

[7]: ani = animate_rotations(
cubic_de_casteljau(q0, q1, q2, q3, np.linspace(0, 1, 100)))

[8]: display_animation(ani, default_mode='reflect')

131

Animations can only be shown in HTML output, sorry!

Arbitrary “Degree”

The class splines.quaternion.DeCasteljau (page 165) allows arbitrary numbers of unit quaternions per
segment and therefore arbitrary “degrees”:

[9]: from splines.quaternion import DeCasteljau

[10]: s = DeCasteljau([
[

angles2quat(0, 0, 0),
angles2quat(90, 0, 0),

],
[

angles2quat(90, 0, 0),
angles2quat(0, 0, 0),
angles2quat(0, 90, 0),

],
[

angles2quat(0, 90, 0),
angles2quat(0, 0, 0),
angles2quat(-90, 0, 0),
angles2quat(-90, 90, 0),

],
], grid=[0, 1, 3, 6])

[11]: ani = animate_rotations(s.evaluate(np.linspace(s.grid[0], s.grid[-1], 100)))

[12]: display_animation(ani, default_mode='reflect')

Animations can only be shown in HTML output, sorry!

Constant Angular Speed

Is there a way to construct a curve parameterized by arc length? This would be very useful.

–[Sho85], section 6: “Questions”

[13]: from splines import ConstantSpeedAdapter

[14]: s1 = DeCasteljau([[
angles2quat(90, 0, 0),
angles2quat(0, -45, 90),
angles2quat(0, 0, 0),
angles2quat(180, 0, 180),

]])

[15]: s2 = ConstantSpeedAdapter(s1)

132

[16]: ani = animate_rotations({
'non-constant speed': s1.evaluate(

np.linspace(s1.grid[0], s1.grid[-1], 100)),
'constant speed': s2.evaluate(

np.linspace(s2.grid[0], s2.grid[-1], 100)),
})

[17]: display_animation(ani, default_mode='reflect')

Animations can only be shown in HTML output, sorry!

Joining Curves

Until now, we have assumed that four control quaternions are given for each “cubic” segment.

If a list of quaternions is given, which is supposed to be interpolated, the intermediate control
quaternions can be computed from neighboring quaternions as shown in the notebook about uniform
Catmull–Rom-like quaternion splines (page 133).
. doc/rotation/de-casteljau.ipynb ends here.

The following section was generated from doc/rotation/catmull-rom-uniform.ipynb .

2.4 Uniform Catmull–Rom-Like Quaternion Splines

We have seen how to use de Casteljau’s algorithm with Slerp (page 130) to create “cubic” Bézier-like
quaternion curve segments. However, if we only have a sequence of rotations to be interpolated and
no additional Bézier control quaternions are provided, it would be great if we could compute the
missing control quaternions automatically from neighboring quaternions.

In the notebook about (uniform) Euclidean Catmull–Rom splines (page 70) we have already seen how this
can be done for splines in Euclidean space:

x̃(+)
i = xi +

ẋi
3

x̃(−)i = xi −
ẋi
3

Note that the velocity vectors ẋi live in the same Euclidean space as the position vectors xi. We can
simply add a fraction of a velocity to a position and we get a new position in return.

Applying this to rotations is unfortunately not very straightforward. When unit quaternions are
moving along the the unit hypersphere, their velocity vectors are tangential to that hypersphere, which
means that the velocity vectors are generally not unit quaternions themselves. Furthermore, adding a
tangent vector to a unit quaternion never leads to a unit quaternion as a result.

Instead of using tangent vectors, we can introduce a (yet unknown) relative quaternion (in the global
frame of reference) (page 123) qi,offset:

q̃(+)
i = qi,offset

1
3 qi

q̃(−)i = qi,offset
− 1

3 qi

When trying to obtain qi,offset, the problem is that there are many equivalent ways to write the equation
for tangent vectors in Euclidean space . . .

133

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/rotation/de-casteljau.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/rotation/catmull-rom-uniform.ipynb

ẋi =
xi+1 − xi−1

2
=

(xi − xi−1) + (xi+1 − xi)

2
=

xi − xi−1

2
+

xi+1 − xi
2

. . . but “translating” them to quaternions will lead to different results!

For the following experiments, let’s define three quaternions using the angles2quat() function from
helper.py:

[1]: from helper import angles2quat

[2]: q3 = angles2quat(0, 0, 0)
q4 = angles2quat(0, 45, -10)
q5 = angles2quat(90, 0, -90)

Relative Rotations

As a first attempt, we can try to “translate” the equation . . .

ẋi =
xi+1 − xi−1

2

. . . to unit quaternions like this:

qi,offset
?
=
(

qi+1qi−1
−1
) 1

2

[3]: offset_a = q3.rotation_to(q5)**(1/2)

We’ll see later whether that’s reasonable or not.

For the next few examples, we define the relative rotations (page 123) associated with the the incoming
and the outgoing chord:

qin = qiqi−1
−1

qout = qi+1qi
−1

[4]: q_in = q3.rotation_to(q4)
q_out = q4.rotation_to(q5)

The next equation . . .

ẋi =
(xi − xi−1) + (xi+1 − xi)

2

. . . can be “translated” to unit quaternions like this:

qi,offset
?
= (qoutqin)

1
2

[5]: offset_b = (q_out * q_in)**(1/2)

We can see that this is actually equivalent to the previous one:

134

helper.py

[6]: max(map(abs, (offset_b - offset_a).xyzw))

[6]: 1.1102230246251565e-16

In the Euclidean case, the order doesn’t matter, but in the quaternion case . . .

qi,offset
?
= (qinqout)

1
2

[7]: offset_c = (q_in * q_out)**(1/2)

. . . there is a (quite large!) difference:

[8]: max(map(abs, (offset_b - offset_c).xyzw))

[8]: 0.2563304531880035

Based on the equation . . .

ẋi =
xi − xi−1

2
+

xi+1 − xi
2

. . . we can try another pair of equations . . .

qi,offset
?
=
(

qout
1
2 qin

1
2

)
[9]: offset_d = (q_out**(1/2) * q_in**(1/2))

qi,offset
?
=
(

qin
1
2 qout

1
2

)
[10]: offset_e = (q_in**(1/6) * q_out**(1/6))

. . . but they are also non-symmetric:

[11]: max(map(abs, (offset_e - offset_d).xyzw))

[11]: 0.20225984693486293

Let’s try a slightly more involved variant, where the order of qin and qout can actually be reversed:

qi,offset
?
=
(

qoutqin
−1
) 1

2 qin =
(

qinqout
−1
) 1

2 qout

[12]: offset_f = (q_out * q_in**-1)**(1/2) * q_in

[13]: offset_g = (q_in * q_out**-1)**(1/2) * q_out

[14]: max(map(abs, (offset_g - offset_f).xyzw))

[14]: 1.1102230246251565e-16

It is nice to have symmetric behavior, but the curvature of the unit hypersphere still causes an error. We
can check that by scaling down the components before the calculation (leading to a smaller curvature)
and scaling up the result:

135

qi,offset
?
=

((
qout

1
10 qin

− 1
10

) 1
2 qin

1
10

)10

=

((
qin

1
10 qout

− 1
10

) 1
2 qout

1
10

)10

[15]: offset_h = ((q_out**(1/10) * q_in**(-1/10))**(1/2) * q_in**(1/10))**10

[16]: offset_i = ((q_in**(1/10) * q_out**(-1/10))**(1/2) * q_out**(1/10))**10

[17]: max(map(abs, (offset_h - offset_i).xyzw))

[17]: 2.1094237467877974e-15

[18]: offset_j = ((q_out**(1/100) * q_in**(-1/100))**(1/2) * q_in**(1/100))**100

[19]: offset_k = ((q_in**(1/100) * q_out**(-1/100))**(1/2) * q_out**(1/100))**100

[20]: max(map(abs, (offset_j - offset_k).xyzw))

[20]: 1.4277468096679513e-13

If we choose a larger scaling factor, the the error caused by curvature becomes smaller (as we will see
in the next section). However, the numerical error gets bigger (as we can already see in the increasing
differences). We cannot scale down the components arbitrarily, but there is a different mathematical
tool that we can use, which boils down to the same thing, as we’ll see in the next section.

Tangent Space

The logarithmic map operation transforms a unit quaternion into a vector that’s a member of the tangent
space at the identity quaternion (a.k.a. 1). In this tangent space – which is a three-dimensional
Euclidean space – we can add and scale components without worrying about curvature. Using the
exponential map operation, the result can be projected back onto the unit hypersphere. This way, we
can take the equation for the tangent vector in Euclidean space . . .

ẋi =
(xi − xi−1) + (xi+1 − xi)

2

. . . and “translate” it into unit quaternions . . .

qi,offset
?
= exp

(
ln(qin) + ln(qout)

2

)
[21]: from splines.quaternion import UnitQuaternion

[22]: offset_l = UnitQuaternion.exp_map((q_in.log_map() + q_out.log_map()) / 2)

This approach is implemented in the splines.quaternion.CatmullRom (page 166) class.

Let’s compare this to the variants from the previous section:

[23]: max(map(abs, (offset_l - offset_f).xyzw))

[23]: 0.01742323752655639

[24]: max(map(abs, (offset_l - offset_h).xyzw))

136

[24]: 0.000167758442754129

[25]: max(map(abs, (offset_l - offset_j).xyzw))

[25]: 1.6769343111344703e-06

Increasing the scaling factor from the previous section will get us closer and closer, but only until the
numerical errors eventually take over.

Example

After all those more or less successful experiments, let’s show an example with actual rotations.

[26]: def offset(q_1, q0, q1):
q_in = q0 * q_1.inverse()
q_out = q1 * q0.inverse()
return UnitQuaternion.exp_map((q_in.log_map() + q_out.log_map()) / 2)

We’ll use the DeCasteljau (page 165) class to create a Bézier-like curve from the given control points,
using canonicalized() (page 165) to avoid angles greater than 180 degrees.

[27]: from splines.quaternion import DeCasteljau, canonicalized

Also, some helper functions from helper.py will come in handy.

[28]: from helper import animate_rotations, display_animation

We don’t want to worry about end conditions here, therefore we create a closed curve.

[29]: def create_closed_curve(rotations):
rotations = list(canonicalized(rotations + rotations[:2]))
control_points = []
for q_1, q0, q1 in zip(rotations, rotations[1:], rotations[2:]):

q_offset = offset(q_1, q0, q1)
control_points.extend([

q_offset**(-1/3) * q0,
q0,
q0,
q_offset**(1/3) * q0])

control_points = control_points[-2:] + control_points[:-2]
segments = list(zip(*[iter(control_points)] * 4))
return DeCasteljau(segments)

[30]: rotations = [
angles2quat(0, 0, 180),
angles2quat(0, 45, 90),
angles2quat(90, 45, 0),
angles2quat(90, 90, -90),
angles2quat(180, 0, -180),
angles2quat(-90, -45, 180),

]

[31]: s = create_closed_curve(rotations)

137

helper.py

[32]: import numpy as np

[33]: times = np.linspace(0, len(rotations), 200, endpoint=False)

[34]: ani = animate_rotations(s.evaluate(times))

[35]: display_animation(ani, default_mode='loop')

Animations can only be shown in HTML output, sorry!

Shoemake’s Approach

In section 4.2, [Sho85] provides two function definitions:

Double(p, q) = 2(p · q)q− p

Bisect(p, q) =
p + q
‖p + q‖

[36]: def double(p, q):
return 2 * p.dot(q) * q - p

[37]: def bisect(p, q):
return (p + q).normalized()

Given three successive key quaternions qn−1, qn and qn+1, these functions are used to compute control
quaternions bn (controlling the incoming tangent of qn) and an (controlling the outgoing tangent of
qn):

an = Bisect(Double(qn−1, qn), qn+1)

bn = Double(an, qn)

It is unclear where these equations come from, we only get a little hint:

For the numerically knowledgeable, this construction approximates the derivative at points
of a sampled function by averaging the central differences of the sample sequence.

—[Sho85], footnote on page 249

[38]: def shoemake_control_quaternions(q_1, q0, q1):
"""Shoemake's control quaternions.

Given three key quaternions, return the control quaternions
preceding and following the middle one.

Actually, the great arc distance of the returned quaternions to q0
still has to be reduced to 1/3 of the distance
to get the proper control quaternions (see the note below).

"""
a = bisect(double(q_1, q0), q1)
b = double(a, q0).normalized()
return b, a

138

Normalization of bn is not explicitly mentioned in the paper, but even though the results have a length
very close to 1.0, we still have to call normalized() to turn the Quaternion (page 163) result into a
UnitQuaternion (page 164).

[39]: b, a = shoemake_control_quaternions(q3, q4, q5)

The results are close (but by far not identical) to the tangent space approach from above:

[40]: max(map(abs, (a - offset_l * q4).xyzw))

[40]: 0.013831724198409168

[41]: max(map(abs, (b - offset_l.inverse() * q4).xyzw))

[41]: 0.018852903209093046

Note

Shoemake’s result has to be scaled by 1
3 , just as we did with qi,offset above:

A simple check proves the curve touches qn and qn+1 at its ends. A rather challenging
differentiation shows it is tangent there to the segments determined by an and bn+1. How-
ever, as with Bézier’s original curve, the magnitude of the tangent is three times that of
the segment itself. That is, we are spinning three times faster than spherical interpolation
along the arc. Fortunately we can correct the speed by merely truncating the end segments
to one third their original length, so that an is closer to qn and bn+1 closer to qn+1.

—[Sho85], section 4.4: “Tangents revisited”

. doc/rotation/catmull-rom-uniform.ipynb ends here.

The following section was generated from doc/rotation/catmull-rom-non-uniform.ipynb .

2.5 Non-Uniform Catmull–Rom-Like Rotation Splines

What is the best way to allow varying intervals between sequence points in parameter
space?

—[Sho85], section 6: “Questions”

In the uniform case (page 133) we have used de Casteljau’s algorithm with Slerp (page 130) to create
a “cubic” rotation spline. To extend this to the non-uniform case, we can transform the parameter
t → t−ti

ti+1−ti
for each spline segment (as shown in the notebook about non-uniform Euclidean Bézier splines

(page 53)). This is implemented in the splines.quaternion.DeCasteljau (page 165) class.

Assuming the control points at the start and the end of each segment are given (from a sequence
of quaternions to be interpolated), we’ll also need a way to calculate the missing two control points.
For inspiration, we can have a look at the notebook about non-uniform (Euclidean) Catmull–Rom splines
(page 74) which provides these equations:

vi =
xi+1 − xi
ti+1 − ti

ẋi =
(ti+1 − ti) vi−1 + (ti − ti−1) vi

ti+1 − ti−1

x̃(+)
i = xi +

(ti+1 − ti) ẋi
3

x̃(−)i = xi −
(ti − ti−1) ẋi

3

139

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/rotation/catmull-rom-uniform.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/rotation/catmull-rom-non-uniform.ipynb

With the relative rotation (page 123) δi = qi+1qi
−1 we can try to “translate” this to quaternions (using

some vector operations in the tangent space):

~ρi =
ln(δi)

ti+1 − ti

~ωi =
(ti+1 − ti)~ρi−1 + (ti − ti−1)~ρi

ti+1 − ti−1

q̃(+)
i

?
= exp

(
ti+1 − ti

3
~ωi

)
qi

q̃(−)i
?
= exp

(
ti − ti−1

3
~ωi

)−1
qi,

where ~ρi is the angular velocity along the great arc from qi to qi+1 within the parameter interval from
ti to ti+1 and ~ωi is the angular velocity of the Catmull–Rom-like quaternion curve at the control point
qi (which is reached at parameter value ti). Finally, q̃(−)i and q̃(+)

i are the control quaternions before
and after qi, respectively.

[1]: from splines.quaternion import UnitQuaternion

def cr_control_quaternions(qs, ts):
q_1, q0, q1 = qs
t_1, t0, t1 = ts
rho_in = q_1.rotation_to(q0).log_map() / (t0 - t_1)
rho_out = q0.rotation_to(q1).log_map() / (t1 - t0)
w0 = ((t1 - t0) * rho_in + (t0 - t_1) * rho_out) / (t1 - t_1)
return [

UnitQuaternion.exp_map(-w0 * (t0 - t_1) / 3) * q0,
UnitQuaternion.exp_map(w0 * (t1 - t0) / 3) * q0,

]

This approach is also implemented in the splines.quaternion.CatmullRom (page 166) class.

To illustrate this, let’s load NumPy, a few helpers from helper.py and splines.quaternion.canonicalized()
(page 165).

[2]: import numpy as np
np.set_printoptions(precision=4)
from helper import angles2quat, animate_rotations, display_animation
from splines.quaternion import canonicalized

The following function can create a closed spline using the above method to calculate control quater-
nions.

[3]: from splines.quaternion import DeCasteljau

def catmull_rom_curve(rotations, grid):
"""Create a closed Catmull-Rom-like quaternion curve."""
assert len(rotations) + 1 == len(grid)
rotations = rotations[-1:] + rotations + rotations[:2]
Avoid angles of more than 180 degrees (including the added rotations):
rotations = list(canonicalized(rotations))
first_interval = grid[1] - grid[0]
last_interval = grid[-1] - grid[-2]
extended_grid = [grid[0] - last_interval, *grid, grid[-1] + first_interval]

(continues on next page)

140

helper.py

(continued from previous page)

control_points = []
for qs, ts in zip(

zip(rotations, rotations[1:], rotations[2:]),
zip(extended_grid, extended_grid[1:], extended_grid[2:])):

q_before, q_after = cr_control_quaternions(qs, ts)
control_points.extend([q_before, qs[1], qs[1], q_after])

control_points = control_points[2:-2]
segments = list(zip(*[iter(control_points)] * 4))
return DeCasteljau(segments, grid)

To try this out, we need a few example quaternions and time instances:

[4]: rotations1 = [
angles2quat(0, 0, 180),
angles2quat(0, 45, 90),
angles2quat(90, 45, 0),
angles2quat(90, 90, -90),
angles2quat(180, 0, -180),
angles2quat(-90, -45, 180),

]

[5]: grid1 = np.array([0, 0.5, 2, 5, 6, 7, 9])

[6]: cr = catmull_rom_curve(rotations1, grid1)

[7]: def evaluate(spline, frames=200):
times = np.linspace(

spline.grid[0], spline.grid[-1], frames, endpoint=False)
return spline.evaluate(times)

[8]: ani = animate_rotations(evaluate(cr))

[9]: display_animation(ani, default_mode='loop')

Animations can only be shown in HTML output, sorry!

Parameterization

Instead of choosing arbitrary time intervals between control quaternions (via the grid argument), we
can calculate time intervals based on the control quaternions themselves.

[10]: rotations2 = [
angles2quat(90, 0, -45),
angles2quat(179, 0, 0),
angles2quat(181, 0, 0),
angles2quat(270, 0, -45),
angles2quat(0, 90, 90),

]

We have seen uniform parameterization already in the previous notebook (page 133), where each param-
eter interval is set to 1:

141

[11]: uniform = catmull_rom_curve(rotations2, grid=range(len(rotations2) + 1))

For chordal parameterization of Euclidean splines (page 59) we used the Euclidean distance as basis for
calculating the time intervals. For rotation splines, it makes more sense to use rotation angles, which
are proportional to the lengths of the great arcs between control quaternions:

[12]: angles = np.array([
a.rotation_to(b).angle
for a, b in zip(rotations2, rotations2[1:] + rotations2[:1])])

angles

[12]: array([1.7027, 0.0349, 1.7027, 2.5936, 1.7178])

The values are probably easier to understand when we show them in degrees:

[13]: np.degrees(angles)

[13]: array([97.5592, 2. , 97.5592, 148.6003, 98.4211])

[14]: chordal_grid = np.concatenate([[0], np.cumsum(angles)])

[15]: chordal = catmull_rom_curve(rotations2, grid=chordal_grid)

For centripetal parameterization of Euclidean splines (page 60) we used the square root of the Euclidean
distances, here we use the square root of the rotation angles:

[16]: centripetal_grid = np.concatenate([[0], np.cumsum(np.sqrt(angles))])

[17]: centripetal = catmull_rom_curve(rotations2, grid=centripetal_grid)

[18]: ani = animate_rotations({
'uniform': evaluate(uniform),
'chordal': evaluate(chordal),
'centripetal': evaluate(centripetal),

})

[19]: display_animation(ani, default_mode='loop')

Animations can only be shown in HTML output, sorry!

The splines.quaternion.CatmullRom (page 166) class provides a parameter alpha that allows arbitrary
parameterization between uniform and chordal (see also parameterized parameterization of Euclidean splines
(page 61)).
. doc/rotation/catmull-rom-non-uniform.ipynb ends here.

The following section was generated from doc/rotation/kochanek-bartels.ipynb .

2.6 Kochanek–Bartels-like Rotation Splines

Remember Kochanek–Bartels splines in Euclidean space (page 84)? We can try to “translate” those to
quaternions by using de Casteljau’s algorithm with Slerp (page 130). We only need a way to create the ap-
propriate incoming and outgoing control quaternions, similarly to what we did to create Catmull–Rom-
like rotation splines (page 139).

We are only considering the more general non-uniform case here. The uniform case can be obtained by
simply using time instances ti with a step size of 1.

142

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/rotation/catmull-rom-non-uniform.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/rotation/kochanek-bartels.ipynb

In the notebook about non-uniform Euclidean Kochanek–Bartels splines (page 95) we showed the following
equations for the incoming tangent vector ẋ(−)i and the outgoing tangent vector ẋ(+)

i at vertex xi (which
corresponds to the parameter value ti):

ai = (1− Ti)(1 + Ci)(1 + Bi)

bi = (1− Ti)(1− Ci)(1− Bi)

ci = (1− Ti)(1− Ci)(1 + Bi)

di = (1− Ti)(1 + Ci)(1− Bi)

ẋ(+)
i =

ai(ti+1 − ti) vi−1 + bi(ti − ti−1) vi
ti+1 − ti−1

ẋ(−)i =
ci(ti+1 − ti) vi−1 + di(ti − ti−1) vi

ti+1 − ti−1
,

where vi =
xi+1−xi
ti+1−ti

.

Given those tangent vectors, we know the equations for the incoming control value x̃(−)i and the

outgoing control value x̃(+)
i from the notebook about non-uniform Euclidean Catmull–Rom splines (page 74):

x̃(+)
i = xi +

(ti+1 − ti)

3
ẋ(+)

i

x̃(−)i = xi −
(ti − ti−1)

3
ẋ(−)i

We can try to “translate” those equations to quaternions (using some vector operations in the tangent
space):

~ρi =
ln(δi)

ti+1 − ti

~ω
(+)
i =

ai(ti+1 − ti)~ρi−1 + bi(ti − ti−1)~ρi
ti+1 − ti−1

~ω
(−)
i =

ci(ti+1 − ti)~ρi−1 + di(ti − ti−1)~ρi
ti+1 − ti−1

q̃(+)
i

?
= exp

(
ti+1 − ti

3
~ω
(+)
i

)
qi

q̃(−)i
?
= exp

(
ti − ti−1

3
~ω
(−)
i

)−1
qi,

where δi = qi+1qi
−1 is the relative rotation (page 123) from qi to qi+1, ~ρi is the angular velocity along

the great arc from qi to qi+1 within the parameter interval from ti to ti+1, ~ω(−)
i is the incoming angular

velocity of the Kochanek–Bartels-like quaternion curve at the control point qi (which is reached at
parameter value ti) and ~ω

(+)
i is the outgoing angular velocity. Finally, q̃(−)i and q̃(+)

i are the control
quaternions before and after qi, respectively.

A Python implementation of these equations is available in the splines.quaternion.KochanekBartels
(page 166) class.

143

[1]: from splines.quaternion import KochanekBartels

Examples

This is all a bit abstract, so let’s try a few of those TCB values to see their influence on the rotation
spline.

For comparison, you can have a look at the examples for Euclidean Kochanek–Bartels splines (page 84).

As so often, we import NumPy and a few helpers from helper.py:

[2]: import numpy as np
from helper import angles2quat, animate_rotations, display_animation

We define a few example rotations . . .

[3]: rotations = [
angles2quat(0, 0, 0),
angles2quat(90, 0, -45),
angles2quat(-45, 45, -90),
angles2quat(135, -35, 90),
angles2quat(90, 0, 0),

]

. . . and a helper function that allows us to try out different TCB values:

[4]: def show_tcb(tcb):
"""Show an animation of rotations with the given TCB values."""
if not isinstance(tcb, dict):

tcb = {'': tcb}
result = {}
for name, tcb in tcb.items():

s = KochanekBartels(
rotations,
alpha=0.5,
endconditions='closed',
tcb=tcb,

)
times = np.linspace(s.grid[0], s.grid[-1], 100, endpoint=False)
result[name] = s.evaluate(times)

display_animation(animate_rotations(result))

When using the default TCB values, a Catmull–Rom-like spline is generated:

[5]: show_tcb([0, 0, 0])

Animations can only be shown in HTML output, sorry!

We can vary tension (T) . . .

[6]: show_tcb({
'T = 1': [1, 0, 0],
'T = 0.5': [0.5, 0, 0],
'T = -0.5': [-0.5, 0, 0],
'T = -1': [-1, 0, 0],

})

144

helper.py

Animations can only be shown in HTML output, sorry!

. . . continuity (C) . . .

[7]: show_tcb({
'C = -1': [0, -1, 0],
'C = -0.5': [0, -0.5, 0],
'C = 0.5': [0, 0.5, 0],
'C = 1': [0, 1, 0],

})

Animations can only be shown in HTML output, sorry!

. . . and bias (B):

[8]: show_tcb({
'B = 1': [0, 0, 1],
'B = 0.5': [0, 0, 0.5],
'B = -0.5': [0, 0, -0.5],
'B = -1': [0, 0, -1],

})

Animations can only be shown in HTML output, sorry!

Using the largest tension value (T = 1) produces the same rotations as using the smallest continuity
value (C = −1). However, the timing is different. With large tension values, rotation slows down close
to the control points. With small continuity, angular velocity varies less.

[9]: show_tcb({
'T = 1': [1, 0, 0],
'C = -1': [0, -1, 0],

})

Animations can only be shown in HTML output, sorry!

Just like in the Euclidean case, B = −1 followed by B = 1 can be used to create linear (i.e. Slerp
(page 125)) segments.

[10]: show_tcb({
'Catmull–Rom': [0, 0, 0],
'2 linear segments': [

(0, 0, 1),
(0, 0, 0),
(0, 0, -1),
(0, 0, 1),
(0, 0, -1),

],
'C = -1': [0, -1, 0],

})

Animations can only be shown in HTML output, sorry!
. doc/rotation/kochanek-bartels.ipynb ends here.

145

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/rotation/kochanek-bartels.ipynb

The following section was generated from doc/rotation/end-conditions-natural.ipynb .

2.7 “Natural” End Conditions

In the notebook about “natural” end conditions for Euclidean splines (page 106) we have derived the follow-
ing equations for calculating the second and penultimate control points of cubic Bézier splines:

x̃(+)
0 =

x0 + x̃(−)1
2

x̃(−)N−1 =
xN−1 + x̃(+)

N−2
2

These equations can be “translated” to quaternions like this:

q̃(+)
0 =

(
q̃(−)1 q0

−1
) 1

2 q0

q̃(−)N−1 =
(

q̃(+)
N−2qN−1

−1
) 1

2 qN−1

When considering that the control polygon starts with the quaternions
(

q0, q̃(+)
0 , q̃(−)1 , q1, q̃(+)

1 , . . .
)

and

ends with
(

. . . , qN−2, q̃(+)
N−2, q̃(−)N−1, qN−1

)
, we can see that the equations are symmetrical. The resulting

control quaternion is calculated as the rotation half-way between the first and third control quaternion,
counting either from the beginning (q0) or the end (qN−1) of the spline.

[1]: def natural_end_condition(first, third):
"""Return second control quaternion given the first and third.

This also works when counting from the end of the spline.

"""
return first.rotation_to(third)**(1 / 2) * first

Examples

Let’s first import NumPy, a few helpers from helper.py and the splines.quaternion.DeCasteljau (page 165)
class:

[2]: import numpy as np
from helper import angles2quat, animate_rotations, display_animation
from splines.quaternion import DeCasteljau

Furthermore, let’s define a helper function for evaluating a single spline segment:

[3]: def calculate_rotations(control_quaternions):
times = np.linspace(0, 1, 50)
return DeCasteljau(

segments=[control_quaternions],
).evaluate(times)

[4]: q0 = angles2quat(45, 0, 0)
q1 = angles2quat(-45, 0, 0)

146

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/rotation/end-conditions-natural.ipynb
helper.py

[5]: q1_control = angles2quat(-45, 0, -90)

[6]: ani = animate_rotations({
'natural begin': calculate_rotations(

[q0, natural_end_condition(q0, q1_control), q1_control, q1]),
})

[7]: display_animation(ani, default_mode='reflect')

Animations can only be shown in HTML output, sorry!

[8]: q0_control = angles2quat(45, 0, 90)

[9]: ani = animate_rotations({
'natural end': calculate_rotations(

[q0, q0_control, natural_end_condition(q1, q0_control), q1]),
})

[10]: display_animation(ani, default_mode='reflect')

Animations can only be shown in HTML output, sorry!
. doc/rotation/end-conditions-natural.ipynb ends here.

The following section was generated from doc/rotation/barry-goldman.ipynb .

2.8 Barry–Goldman Algorithm With Slerp

We can try to use the Barry–Goldman algorithm for non-uniform Euclidean Catmull–Rom splines (page 75)
using Slerp (page 125) instead of linear interpolations, just as we have done with De Casteljau’s algorithm
(page 130).

[1]: def slerp(one, two, t):
"""Spherical Linear intERPolation."""
return (two * one.inverse())**t * one

[2]: def barry_goldman(rotations, times, t):
"""Calculate a spline segment with the Barry-Goldman algorithm.

Four quaternions and the corresponding four time values
have to be specified. The resulting spline segment is located
between the second and third quaternion. The given time *t*
must be between the second and third time value.

"""
q0, q1, q2, q3 = rotations
t0, t1, t2, t3 = times
return slerp(

slerp(
slerp(q0, q1, (t - t0) / (t1 - t0)),
slerp(q1, q2, (t - t1) / (t2 - t1)),
(t - t0) / (t2 - t0)),

slerp(
slerp(q1, q2, (t - t1) / (t2 - t1)),

(continues on next page)

147

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/rotation/end-conditions-natural.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/rotation/barry-goldman.ipynb

(continued from previous page)

slerp(q2, q3, (t - t2) / (t3 - t2)),
(t - t1) / (t3 - t1)),

(t - t1) / (t2 - t1))

To illustrate this, let’s import NumPy and a few helpers from helper.py:

[3]: import numpy as np
from helper import angles2quat, plot_rotation, plot_rotations
from helper import animate_rotations, display_animation

[4]: q0 = angles2quat(45, 0, 0)
q1 = angles2quat(0, -40, 0)
q2 = angles2quat(0, 70, 0)
q3 = angles2quat(-45, 0, 0)

[5]: t0 = 0
t1 = 1
t2 = 5
t3 = 8

[6]: plot_rotation({'q0': q0, 'q1': q1, 'q2': q2, 'q3': q3});

[7]: plot_rotations([
barry_goldman([q0, q1, q2, q3], [t0, t1, t2, t3], t)
for t in np.linspace(t1, t2, 9)

], figsize=(8, 1))

[8]: ani = animate_rotations([
barry_goldman([q0, q1, q2, q3], [t0, t1, t2, t3], t)
for t in np.linspace(t1, t2, 50)

])

[9]: display_animation(ani, default_mode='reflect')

Animations can only be shown in HTML output, sorry!

For the next example, we use the splines.quaternion.BarryGoldman (page 166) class:

[10]: from splines.quaternion import BarryGoldman

148

helper.py

[11]: rotations = [
angles2quat(0, 0, 180),
angles2quat(0, 45, 90),
angles2quat(90, 45, 0),
angles2quat(90, 90, -90),
angles2quat(180, 0, -180),
angles2quat(-90, -45, 180),

]

[12]: bg1 = BarryGoldman(rotations, alpha=0.5)

For comparison, we also create a Catmull–Rom-like quaternion spline (page 139) using the class
splines.quaternion.CatmullRom (page 166):

[13]: from splines.quaternion import CatmullRom

[14]: cr1 = CatmullRom(rotations, alpha=0.5, endconditions='closed')

[15]: def evaluate(spline, frames=200):
times = np.linspace(

spline.grid[0], spline.grid[-1], frames, endpoint=False)
return spline.evaluate(times)

[16]: ani = animate_rotations({
'Barry–Goldman': evaluate(bg1),
'Catmull–Rom-like': evaluate(cr1),

})
display_animation(ani, default_mode='loop')

Animations can only be shown in HTML output, sorry!

Don’t worry if you don’t see any difference, the two are indeed extremely similar:

[17]: max(max(map(abs, q.xyzw)) for q in (evaluate(bg1) - evaluate(cr1)))

[17]: 0.0026694474661510537

However, when different time values are chosen, the difference between the two can become signifi-
cantly bigger.

[18]: grid = 0, 0.5, 1, 5, 6, 7, 10

[19]: bg2 = BarryGoldman(rotations, grid)
cr2 = CatmullRom(rotations, grid, endconditions='closed')

[20]: ani = animate_rotations({
'Barry–Goldman': evaluate(bg2),
'Catmull–Rom-like': evaluate(cr2),

})
display_animation(ani, default_mode='loop')

Animations can only be shown in HTML output, sorry!

149

Constant Angular Speed

A big advantage of de Casteljau’s algorithm is that when evaluating a spline at a given parameter
value, it directly provides the appropriate tangent vector. When using the Barry–Goldman algorithm,
the tangent vector has to be calculated separately, which make re-parameterization for constant angu-
lar speed very inefficient.

[21]: class BarryGoldmanWithDerivative(BarryGoldman):

delta_t = 0.000001

def evaluate(self, t, n=0):
"""Evaluate quaternion or angular velocity."""
if not np.isscalar(t):

return np.array([self.evaluate(t, n) for t in t])
if n == 0:

return super().evaluate(t)
elif n == 1:

NB: We move the interval around because
we cannot access times before and after
the first and last time, respectively.
fraction = (t - self.grid[0]) / (self.grid[-1] - self.grid[0])
before = super().evaluate(t - fraction * self.delta_t)
after = super().evaluate(t + (1 - fraction) * self.delta_t)
NB: Double angle
return (after * before.inverse()).log_map() * 2 / self.delta_t

else:
raise ValueError('Unsupported n: {!r}'.format(n))

[22]: from splines import ConstantSpeedAdapter

[23]: bg3 = ConstantSpeedAdapter(BarryGoldmanWithDerivative(rotations, alpha=0.5))

Warning

Evaluating this spline takes a long time!

[24]: %%time
bg3_evaluated = evaluate(bg3)

CPU times: user 1min 33s, sys: 17.7 ms, total: 1min 33s
Wall time: 1min 33s

[25]: ani = animate_rotations({
'non-constant speed': evaluate(bg1),
'constant speed': bg3_evaluated,

})

[26]: display_animation(ani, default_mode='loop')

Animations can only be shown in HTML output, sorry!
. doc/rotation/barry-goldman.ipynb ends here.

150

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/rotation/barry-goldman.ipynb

The following section was generated from doc/rotation/cumulative-form.ipynb .

2.9 Cumulative Form

The basic idea, as proposed by [KKS95] (section 4) is the following:

Instead of representing a curve as a sum of basis functions weighted by its control point’s position
vectors pi (as it’s for example done with Bézier splines (page 39)), they suggest to use the relative
difference vectors ∆pi between successive control points.

These relative difference vectors can then be “translated” to local rotations (replacing additions with
multiplications), leading to a form of rotation splines.

Piecewise Slerp

As an example, they define a piecewise linear curve

p(t) = p0 +
n

∑
i=1

αi(t)∆pi,

where

∆pi = pi − pi−1

αi(t) =


0 t < i− 1
t− i + 1 i− 1 ≤ t < i
1 t ≥ i.

[1]: def alpha(i, t):
if t < i - 1:

return 0
elif t >= i:

return 1
else:

return t - i + 1

Note

There is an off-by-one error in the paper’s definition of αi(t):

αi(t) =


0 t < i
t− i i ≤ t < i + 1
1 t ≥ i + 1.

This assumes that i starts with 0, but it actually starts with 1.

This “cumulative form” can be “translated” to a rotation spline by replacing addition with multipli-
cation and the relative difference vectors by relative (i.e. local) rotations (represented by unit quater-
nions):

q(t) = q0

n

∏
i=1

exp(ωiαi(t)),

151

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/rotation/cumulative-form.ipynb

where

ωi = log
(

q−1
i−1qi

)
.

The paper uses above notation, but this could equivalently be written as

q(t) = q0

n

∏
i=1

(
q−1

i−1qi

)αi(t)
.

[2]: import numpy as np

helper.py

[3]: from helper import angles2quat, animate_rotations, display_animation

[4]: from splines.quaternion import UnitQuaternion

[5]: # NB: math.prod() since Python 3.8
product = np.multiply.reduce

[6]: def piecewise_slerp(qs, t):
return qs[0] * product([

(qs[i - 1].inverse() * qs[i])**alpha(i, t)
for i in range(1, len(qs))])

[7]: qs = [
angles2quat(0, 0, 0),
angles2quat(90, 0, 0),
angles2quat(90, 90, 0),
angles2quat(90, 90, 90),

]

[8]: times = np.linspace(0, len(qs) - 1, 100)

[9]: ani = animate_rotations([piecewise_slerp(qs, t) for t in times])

[10]: display_animation(ani, default_mode='reflect')

Animations can only be shown in HTML output, sorry!

Cumulative Bézier/Bernstein Curve

After the piecewise Slerp, [KKS95] show (in section 5.1) how to create a cumulative form inspired by
Bézier splines, i.e. using Bernstein polynomials.

They start with the well-known equation for Bézier splines:

p(t) =
n

∑
i=0

piβi,n(t),

where βi,n(t) are Bernstein basis functions as shown in the notebook about Bézier splines (page 53).

They re-formulate this into a cumulative form:

152

helper.py

p(t) = p0 β̃0,n(t) +
n

∑
i=1

∆pi β̃i,n(t),

where the cumulative Bernstein basis functions are given by

β̃i,n(t) =
n

∑
j=i

β j,n(t).

We can get the Bernstein basis polynomials via the function splines.Bernstein.basis() (page 160):

[11]: from splines import Bernstein

. . . and create a simple helper function to sum them up:

[12]: from itertools import accumulate

[13]: def cumulative_bases(degree, t):
return list(accumulate(Bernstein.basis(degree, t)[::-1]))[::-1]

Finally, they “translate” this into a rotation spline using quaternions, like before:

q(t) = q0

n

∏
i=1

exp
(
ωi β̃i,n(t)

)
,

where

ωi = log(q−1
i−1qi).

Again, they use above notation in the paper, but this could equivalently be written as

q(t) = q0

n

∏
i=1

(
q−1

i−1qi

)β̃i,n(t)
.

[14]: def cumulative_bezier(qs, t):
degree = len(qs) - 1
bases = cumulative_bases(degree, t)
assert np.isclose(bases[0], 1)
return qs[0] * product([

(qs[i - 1].inverse() * qs[i])**bases[i]
for i in range(1, len(qs))

])

[15]: times = np.linspace(0, 1, 100)

[16]: rotations = [cumulative_bezier(qs, t) for t in times]

[17]: ani = animate_rotations(rotations)

[18]: display_animation(ani, default_mode='reflect')

Animations can only be shown in HTML output, sorry!

153

Comparison with De Casteljau’s Algorithm

This Bézier quaternion curve has a different shape from the Bézier quaternion curve of
[Sho85].

–[KKS95], section 5.1

The method described by [Sho85] is shown in a separate notebook (page 130). An implementation is
available in the splines.quaternion.DeCasteljau (page 165) class:

[19]: from splines.quaternion import DeCasteljau

[20]: times = np.linspace(0, 1, 100)

[21]: control_polygon = [
angles2quat(90, 0, 0),
angles2quat(0, -45, 90),
angles2quat(0, 0, 0),
angles2quat(180, 0, 180),

]

[22]: cumulative_rotations = [
cumulative_bezier(control_polygon, t)
for t in times

]

[23]: cumulative_rotations_reversed = [
cumulative_bezier(control_polygon[::-1], t)
for t in times

][::-1]

[24]: casteljau_rotations = DeCasteljau([control_polygon]).evaluate(times)

[25]: ani = animate_rotations({
'De Casteljau': casteljau_rotations,
'Cumulative': cumulative_rotations,
'Cumulative reversed': cumulative_rotations_reversed,

})

[26]: display_animation(ani, default_mode='reflect')

Animations can only be shown in HTML output, sorry!

Applying the same method on the reversed list of control points and then time-reversing the resulting
sequence of rotations leads to an equal (except for rounding errors) sequence of rotations when using
De Casteljau’s algorithm:

[27]: casteljau_rotations_reversed = DeCasteljau([control_polygon[::-1]]).
↪→evaluate(times)[::-1]

[28]: for one, two in zip(casteljau_rotations, casteljau_rotations_reversed):
assert np.isclose(one.scalar, two.scalar)
assert np.isclose(one.vector[0], two.vector[0])
assert np.isclose(one.vector[1], two.vector[1])
assert np.isclose(one.vector[2], two.vector[2])

154

However, doing the same thing with the “cumulative form” can lead to a significantly different se-
quence, as can be seen in the above animation.
. doc/rotation/cumulative-form.ipynb ends here.

The following section was generated from doc/rotation/naive-4d-interpolation.ipynb .

2.10 Naive 4D Quaternion Interpolation

This method for interpolating rotations is normally not recommended. But it might still be interesting
to try it out . . .

Since quaternions form a vector space (albeit a four-dimensional one), all methods for Euclidean splines
(page 2) can be applied. However, even though rotations can be represented by unit quaternions, which
are a subset of all quaternions, this subset is not a Euclidean space. All unit quaternions form the unit
hypersphere S3 (which is a curved space), and each point on this hypersphere uniquely corresponds
to a rotation.

When we convert our desired rotation “control points” to quaternions and naively interpolate in 4D
quaternion space, the interpolated quaternions are in general not unit quaternions, i.e. they are not
part of the unit hypersphere and they don’t correspond to a rotation. In order to force them onto the
unit hypersphere, we can normalize them, though, which projects them onto the unit hypersphere.

Note that this is a very crude form of interpolation and it might result in unexpected curve shapes.
Especially the temporal behavior might be undesired.

If, for some application, more speed is essential, non-spherical quaternion splines will
undoubtedly be faster than angle interpolation, while still free of axis bias and gimbal lock.

–[Sho85], section 5.4

Abandoning the unit sphere, one could work with the four-dimensional Euclidean space of
arbitrary quaternions. How do standard interpolation methods applied there behave when
mapped back to matrices? Note that we now have little guidance in picking the inverse
image for a matrix, and that cusp-free R4 paths do not always project to cusp-free S3 paths.

–[Sho85], section 6

[1]: import numpy as np

[2]: import splines

[3]: from splines.quaternion import Quaternion

As always, we use a few helper functions from helper.py:

[4]: from helper import angles2quat, animate_rotations, display_animation

[5]: rotations = [
angles2quat(0, 0, 0),
angles2quat(0, 0, 45),
angles2quat(90, 90, 0),
angles2quat(180, 0, 90),

]

We use xyzw coordinate order here (because it is more common), but since the 4D coordinates are
independent, we could as well use wxyz order (or any order, for that matter) with identical results
(apart from rounding errors).

However, for illustrating the non-normalized case, we rely on the implicit conversion from xyzw coor-
dinates in the function animate_rotations().

155

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/rotation/cumulative-form.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/rotation/naive-4d-interpolation.ipynb
helper.py

[6]: rotations_xyzw = [q.xyzw for q in rotations]

As an example we use splines.CatmullRom (page 161) here, but any Euclidean spline could be used.

[7]: s = splines.CatmullRom(rotations_xyzw, endconditions='closed')

[8]: times = np.linspace(s.grid[0], s.grid[-1], 100)

[9]: interpolated_xyzw = s.evaluate(times)

[10]: normalized = [
Quaternion(w, (x, y, z)).normalized()
for x, y, z, w in interpolated_xyzw]

For comparison, we also create a splines.quaternion.CatmullRom (page 166) instance:

[11]: spherical_cr = splines.quaternion.CatmullRom(rotations, endconditions='closed')

[12]: ani = animate_rotations({
'normalized 4D interp.': normalized,
'spherical interp.': spherical_cr.evaluate(times),

})
display_animation(ani, default_mode='loop')

Animations can only be shown in HTML output, sorry!

In case you are wondering what would happen if you forget to normalize the results, let’s also show
the non-normalized data:

[13]: ani = animate_rotations({
'normalized': normalized,
'not normalized': interpolated_xyzw,

})
display_animation(ani, default_mode='loop')

Animations can only be shown in HTML output, sorry!

Obviously, the non-normalized values are not pure rotations.

To get a different temporal behavior, let’s try using centripetal parameterization (page 60).

Note that this guarantees the absence of cusps and self-intersections in the 4D curve, but this guarantee
doesn’t extend to the projection onto the unit hypersphere.

[14]: s2 = splines.CatmullRom(rotations_xyzw, alpha=0.5, endconditions='closed')

[15]: times2 = np.linspace(s2.grid[0], s2.grid[-1], len(times))

[16]: normalized2 = [
Quaternion(w, (x, y, z)).normalized()
for x, y, z, w in s2.evaluate(times2)]

[17]: ani = animate_rotations({
'uniform': normalized,
'centripetal': normalized2,

(continues on next page)

156

(continued from previous page)

})
display_animation(ani, default_mode='loop')

Animations can only be shown in HTML output, sorry!

Let’s also try arc-length parameterization with the ConstantSpeedAdapter (page 162):

[18]: s3 = splines.ConstantSpeedAdapter(s2)
times3 = np.linspace(s3.grid[0], s3.grid[-1], len(times))

[19]: normalized3 = [
Quaternion(w, (x, y, z)).normalized()
for x, y, z, w in s3.evaluate(times3)]

The arc-length parameterized spline has a constant speed in 4D quaternion space, but that doesn’t
mean it has a constant angular speed!

For comparison, we also create a rotation spline with constant angular speed:

[20]: s4 = splines.ConstantSpeedAdapter(
splines.quaternion.CatmullRom(

rotations, alpha=0.5, endconditions='closed'))
times4 = np.linspace(s4.grid[0], s4.grid[-1], len(times))

[21]: ani = animate_rotations({
'const. 4D speed': normalized3,
'const. angular speed': s4.evaluate(times4),

})
display_animation(ani, default_mode='loop')

Animations can only be shown in HTML output, sorry!

The difference is subtle, but it is definitely visible. More extreme examples can certainly be found.
. doc/rotation/naive-4d-interpolation.ipynb ends here.

The following section was generated from doc/rotation/naive-euler-angles-interpolation.ipynb .

2.11 Naive Interpolation of Euler Angles

This method for interpolating 3D rotations is very much not recommended!

Since 3D rotations can be represented by a list of three angles, it might be tempting to simply interpo-
late those angles independently.

Let’s try it and see what happens, shall we?

[1]: import numpy as np

[2]: import splines

As always, we use a few helper functions from helper.py:

[3]: from helper import angles2quat, animate_rotations, display_animation

We are using splines.CatmullRom (page 161) to interpolate the Euler angles independently and
splines.quaternion.CatmullRom (page 166) to interpolate the associated quaternions for comparison:

157

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/rotation/naive-4d-interpolation.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/rotation/naive-euler-angles-interpolation.ipynb
helper.py

[4]: def plot_interpolated_angles(angles):
s1 = splines.CatmullRom(angles, endconditions='closed')
times = np.linspace(s1.grid[0], s1.grid[-1], 100)
s2 = splines.quaternion.CatmullRom(

[angles2quat(azi, ele, roll) for azi, ele, roll in angles],
endconditions='closed')

ani = animate_rotations({
'Euler angles': [angles2quat(*abc) for abc in s1.evaluate(times)],
'quaternions': s2.evaluate(times),

})
display_animation(ani, default_mode='loop')

[5]: plot_interpolated_angles([
(0, 0, 0),
(45, 0, 0),
(90, 45, 0),
(90, 90, 0),
(180, 0, 90),

])

Animations can only be shown in HTML output, sorry!

There is clearly a difference between the two, but the Euler angles don’t look that bad.

Let’s try another example:

[6]: plot_interpolated_angles([
(-175, 0, 0),
(175, 0, 0),

])

Animations can only be shown in HTML output, sorry!

Here we see that the naive interpolation isn’t aware that the azimuth angle is supposed to wrap around
at 180 degrees.

This could be fixed with a less naive implementation, but there are also unfixable problems, as this
example shows:

[7]: plot_interpolated_angles([
(45, 45, 0),
(45, 90, 0),
(-135, 45, 180),

])

Animations can only be shown in HTML output, sorry!

Even though all involved rotations are supposed to happen around a single rotation axis, The Euler
angles interpolation is all over the place.
. doc/rotation/naive-euler-angles-interpolation.ipynb ends here.

158

https://github.com/AudioSceneDescriptionFormat/splines/blob/0.2.0/doc/rotation/naive-euler-angles-interpolation.ipynb

3 Python Module

splines (page 159) Piecewise polynomial curves (in Euclidean
space).

splines.quaternion (page 163) Quaternions and unit-quaternion splines.

3.1 splines

Piecewise polynomial curves (in Euclidean space).

Submodules

quaternion (page 163) Quaternions and unit-quaternion splines.

Classes

Bernstein (page 160)(segments[, grid]) Piecewise Bézier curve using Bernstein basis.
CatmullRom (page 161)(vertices[, grid, alpha,
...])

Catmull--Rom spline.

ConstantSpeedAdapter (page 162)(curve) Re-parameterize a spline to have constant speed.
CubicHermite (page 160)(vertices, tangents[,
grid])

Cubic Hermite curve.

KochanekBartels (page 161)(vertices[, grid,
tcb, ...])

Kochanek--Bartels spline.

Monomial (page 159)(segments, grid) Piecewise polynomial curve using monomial ba-
sis.

MonotoneCubic (page 162)(values, *args,
**kwargs)

Monotone cubic curve.

Natural (page 161)(vertices[, grid, alpha, end-
conditions])

Natural spline.

NewGridAdapter (page 162)(curve[, new_grid]) Re-parameterize a spline with new grid values.
PiecewiseMonotoneCubic (page 162)(values[,
grid, ...])

Piecewise monotone cubic curve.

class splines.Monomial(segments, grid)
Bases: object47

Piecewise polynomial curve using monomial basis.

See Polynomial Parametric Curves (page 2).

Coefficients can have arbitrary dimension. An arbitrary polynomial degree d can be used by
specifying d + 1 coefficients per segment. The i-th segment is evaluated using this equation:

pi(t) =
d

∑
k=0

ai,k

(
t− ti

ti+1 − ti

)k
for ti ≤ t < ti+1

This is similar to scipy.interpolate.PPoly48, which states:

“High-order polynomials in the power basis can be numerically unstable. Precision
problems can start to appear for orders larger than 20-30.”

159

https://docs.python.org/3/library/functions.html#object
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PPoly.html#scipy.interpolate.PPoly

This shouldn’t be a problem since most commonly splines of degree 3 (i.e. cubic splines) are
used.

Parameters

• segments – Sequence of polynomial segments. Each segment ai contains co-
efficients for the monomial basis (in order of decreasing degree). Different
segments can have different polynomial degree.

• grid – Sequence of parameter values ti corresponding to segment boundaries.
Must be strictly increasing.

evaluate(t, n=0)
Get value (or n-th derivative) at given parameter value(s) t.

class splines.Bernstein(segments, grid=None)
Bases: object49

Piecewise Bézier curve using Bernstein basis.

See Bézier Splines (page 39).

Parameters

• segments – Sequence of segments, each one consisting of multiple Bézier con-
trol points. Different segments can have different numbers of control points
(and therefore different polynomial degrees).

• grid (optional) – Sequence of parameter values corresponding to segment
boundaries. Must be strictly increasing. If not specified, a uniform grid is used
(0, 1, 2, 3, . . .).

static basis(degree, t)
Bernstein basis polynomials of given degree, evaluated at t.

Returns a list of values corresponding to i = 0, . . . , n, given the degree n, using the formula

bi,n(t) =
(

n
i

)
ti (1− t)n−i ,

with the binomial coefficient (n
i) =

n!
i!(n−i)! .

evaluate(t, n=0)
Get value at the given parameter value(s).

class splines.CubicHermite(vertices, tangents, grid=None)
Bases: splines.Monomial (page 159)

Cubic Hermite curve.

See Hermite Splines (page 13).

Parameters

• vertices – Sequence of vertices.

• tangents – Sequence of tangent vectors (two per segment, outgoing and in-
coming).

• grid (optional) – Sequence of parameter values. Must be strictly increasing.
If not specified, a uniform grid is used (0, 1, 2, 3, . . .).

matrix = array([[2, -2, 1, 1], [-3, 3, -2, -1], [0, 0, 1, 0], [1, 0, 0,
0]])

47 https://docs.python.org/3/library/functions.html#object
48 https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PPoly.html#scipy.interpolate.PPoly
49 https://docs.python.org/3/library/functions.html#object

160

https://docs.python.org/3/library/functions.html#object

class splines.CatmullRom(vertices, grid=None, *, alpha=None, endconditions='natural')
Bases: splines.CubicHermite (page 160)

Catmull–Rom spline.

This class implements one specific member of the family of splines described in [CR74], which
is commonly known as Catmull–Rom spline: The cubic spline that can be constructed by linear
Lagrange interpolation (and extrapolation) followed by quadratic B-spline blending, or equiva-
lently, quadratic Lagrange interpolation followed by linear B-spline blending.

The implementation used in this class, however, does nothing of that sort. It simply calculates
the appropriate tangent vectors at the control points and instantiates a CubicHermite (page 160)
spline.

See Catmull–Rom Splines (page 55).

Parameters

• vertices – Sequence of vertices.

• grid (optional) – Sequence of parameter values. Must be strictly increasing.
If not specified, a uniform grid is used (0, 1, 2, 3, . . .).

• alpha (optional) – TODO

• endconditions (optional) – Start/end conditions. Can be 'closed',
'natural' or pair of tangent vectors (a.k.a. “clamped”). If 'closed', the first
vertex is re-used as last vertex and an additional grid time has to be specified.

class splines.KochanekBartels(vertices, grid=None, *, tcb=(0, 0, 0), alpha=None,
endconditions='natural')

Bases: splines.CubicHermite (page 160)

Kochanek–Bartels spline.

See Kochanek–Bartels Splines (page 84).

Parameters

• vertices – Sequence of vertices.

• grid (optional) – Sequence of parameter values. Must be strictly increasing.
If not specified, a uniform grid is used (0, 1, 2, 3, . . .).

• tcb (optional) – Sequence of tension, continuity and bias triples. TCB values
can only be given for the interior vertices.

• alpha (optional) – TODO

• endconditions (optional) – Start/end conditions. Can be 'closed',
'natural' or pair of tangent vectors (a.k.a. “clamped”). If 'closed', the first
vertex is re-used as last vertex and an additional grid time has to be specified.

class splines.Natural(vertices, grid=None, *, alpha=None, endconditions='natural')
Bases: splines.CubicHermite (page 160)

Natural spline.

See Natural Splines (page 29).

Parameters

• vertices – Sequence of vertices.

• grid (optional) – Sequence of parameter values. Must be strictly increasing.
If not specified, a uniform grid is used (0, 1, 2, 3, . . .).

• alpha (optional) – TODO

161

• endconditions (optional) – Start/end conditions. Can be 'closed',
'natural' or pair of tangent vectors (a.k.a. “clamped”). If 'closed', the first
vertex is re-used as last vertex and an additional grid time has to be specified.

class splines.PiecewiseMonotoneCubic(values, grid=None, slopes=None, *, alpha=None,
closed=False)

Bases: splines.CatmullRom (page 161)

Piecewise monotone cubic curve.

See Piecewise Monotone Interpolation (page 107).

This only works for one-dimensional values.

For undefined slopes, _calculate_tangent() is called on the base class.

Parameters

• values – Sequence of values to be interpolated.

• grid (optional) – Sequence of parameter values. Must be strictly increasing.
If not specified, a uniform grid is used (0, 1, 2, 3, . . .).

• slopes (optional) – Sequence of slopes or None if slope should be computed
from neighboring values. An error is raised if a segment would become non-
monotone with a given slope.

class splines.MonotoneCubic(values, *args, **kwargs)
Bases: splines.PiecewiseMonotoneCubic (page 162)

Monotone cubic curve.

This takes the same arguments as PiecewiseMonotoneCubic (page 162) (except closed), but it
raises an error if the given values are not montone.

See Monotone Interpolation (page 114).

get_time(value)
Get the time instance for the given value.

If the solution is not unique (i.e. there is a plateau), None is returned.

class splines.ConstantSpeedAdapter(curve)
Bases: object50

Re-parameterize a spline to have constant speed.

For splines in Euclidean space this amounts to arc-length parameterization.

However, this class is implemented in a way that also allows using rotation splines which will
be re-parameterized to have constant angular speed.

The parameter s represents the cumulative arc-length or the cumulative rotation angle, respec-
tively.

evaluate(s)

class splines.NewGridAdapter(curve, new_grid=1)
Bases: object51

Re-parameterize a spline with new grid values.

Parameters

• curve – A spline.

50 https://docs.python.org/3/library/functions.html#object

162

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

• new_grid (optional) – If a single number is given, the new parameter will
range from 0 to that number. Otherwise, a sequence of numbers has to be
given, one for each grid value. Instead of a value, None can be specified to
choose a value automatically. The first and last value cannot be None.

evaluate(u)

3.2 splines.quaternion

Quaternions and unit-quaternion splines.

Functions

canonicalized (page 165)(quaternions) Iterator adapter to ensure minimal angles be-
tween quaternions.

slerp (page 165)(one, two, t) Spherical Linear intERPolation.

Classes

BarryGoldman (page 166)(quaternions[, grid,
alpha])

Rotation spline using Barry--Goldman algo-
rithm.

CatmullRom (page 166)(quaternions[, grid, al-
pha, ...])

Catmull--Rom-like rotation spline.

DeCasteljau (page 165)(segments[, grid]) Spline using De Casteljau's algorithm with
slerp() (page 165).

KochanekBartels (page 166)(quaternions[,
grid, tcb, ...])

Kochanek--Bartels-like rotation spline.

PiecewiseSlerp (page 165)(quaternions, *[,
grid, closed])

Piecewise Slerp.

Quaternion (page 163)(scalar, vector) A very simple quaternion class.
UnitQuaternion (page 164)() Unit quaternion.

class splines.quaternion.Quaternion(scalar, vector)
Bases: object52

A very simple quaternion class.

This is the base class for the more relevant UnitQuaternion (page 164) class.

See the notebook about quaternions (page 119).

property scalar
The scalar part (a.k.a. real part) of the quaternion.

property vector
The vector part (a.k.a. imaginary part) of the quaternion.

conjugate()
Return quaternion with same scalar (page 163) part, negated vector (page 163) part.

normalized()
Return quaternion with same 4D direction but unit norm (page 164).

51 https://docs.python.org/3/library/functions.html#object

163

https://docs.python.org/3/library/functions.html#object

dot(other)
Dot product of two quaternions.

This is the 4-dimensional dot product, yielding a scalar result. This operation is commuta-
tive.

Note that this is different from the quaternion multiplication (q1 * q2), which produces
another quaternion (and is noncommutative).

property norm
Length of the quaternion in 4D space.

property xyzw
Components of the quaternion, scalar (page 163) last.

property wxyz
Components of the quaternion, scalar (page 163) first.

class splines.quaternion.UnitQuaternion
Bases: splines.quaternion.Quaternion (page 163)

Unit quaternion.

See the section about unit quaternions (page 120).

classmethod from_axis_angle(axis, angle)
Create a unit quaternion from a rotation axis (page 164) and angle (page 164).

Parameters

• axis – Three-component rotation axis. This will be normalized.

• angle – Rotation angle in radians.

classmethod from_unit_xyzw(xyzw)
Create a unit quaternion from another unit quaternion.

Parameters xyzw – Components of a unit quaternion (scalar (page 163) last). This
will not be normalized, it must already have unit length.

inverse()
Multiplicative inverse.

For unit quaternions, this is the same as conjugate() (page 163).

classmethod exp_map(value)
Exponential map from R3 to unit quaternions.

This is the inverse operation to log_map() (page 164).

Parameters value (3-tuple) – Element of the tangent space at the quaternion
identity.

log_map()
Logarithmic map from unit quaternions to R3.

Returns Corresponding vector in the tangent space at the quaternion identity.

property axis
The (normalized) rotation axis.

property angle
The rotation angle in radians.

52 https://docs.python.org/3/library/functions.html#object

164

rotation_to(other)
Rotation required to rotate self into other.

See Relative Rotation (Global Frame of Reference) (page 123).

Parameters other (UnitQuaternion (page 164)) – Target rotation.

Returns Relative rotation (as UnitQuaternion (page 164)).

rotate_vector(v)
Apply rotation to a 3D vector.

Parameters v (3-tuple) – A vector in R3.

Returns The rotated vector.

splines.quaternion.slerp(one, two, t)
Spherical Linear intERPolation.

See Spherical Linear Interpolation (Slerp) (page 125).

Parameters

• one – Start quaternion.

• two – End quaternion.

• t – Parameter value(s) between 0 and 1.

splines.quaternion.canonicalized(quaternions)
Iterator adapter to ensure minimal angles between quaternions.

class splines.quaternion.PiecewiseSlerp(quaternions, *, grid=None, closed=False)
Bases: object53

Piecewise Slerp.

See Piecewise Slerp (page 128).

Parameters

• quaternions – Sequence of rotations to be interpolated. The quaternions will
be canonicalized() (page 165).

• grid (optional) – Sequence of parameter values. Must be strictly increasing.
Must have the same length as quaternions, except when closed is True, where it
must be one element longer. If not specified, a uniform grid is used (0, 1, 2, 3,
. . .).

• closed (optional) – If True, the first quaternion is repeated at the end.

evaluate(t, n=0)

class splines.quaternion.DeCasteljau(segments, grid=None)
Bases: object54

Spline using De Casteljau’s algorithm with slerp() (page 165).

See the corresponding notebook (page 130) for details.

Parameters

• segments – Sequence of segments, each one consisting of multiple control
quaternions. Different segments can have different numbers of control points.

• grid (optional) – Sequence of parameter values corresponding to segment
boundaries. Must be strictly increasing. If not specified, a uniform grid is used
(0, 1, 2, 3, . . .).

53 https://docs.python.org/3/library/functions.html#object

165

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

evaluate(t, n=0)
Get value or angular velocity at given parameter value(s).

Parameters

• t – Parameter value(s).

• n ({0, 1}, optional) – Use 0 for calculating the value (a quaternion), 1
for the angular velocity (a 3-element vector).

class splines.quaternion.KochanekBartels(quaternions, grid=None, *, tcb=(0, 0, 0), alpha=None,
endconditions='natural')

Bases: splines.quaternion.DeCasteljau (page 165)

Kochanek–Bartels-like rotation spline.

See the corresponding notebook (page 142) for details.

Parameters

• quaternions – Sequence of rotations to be interpolated. The quaternions will
be canonicalized() (page 165).

• grid (optional) – Sequence of parameter values. Must be strictly increasing.
If not specified, a uniform grid is used (0, 1, 2, 3, . . .).

• tcb (optional) – Sequence of tension, continuity and bias triples. TCB values
can only be given for the interior quaternions. If only two quaternions are
given, TCB values are ignored.

• alpha (optional) – TODO

• endconditions (optional) – Start/end conditions. Can be 'closed',
'natural' or pair of tangent vectors (a.k.a. “clamped”).

TODO: clamped

If 'closed', the first rotation is re-used as last rotation and an additional grid
time has to be specified.

class splines.quaternion.CatmullRom(quaternions, grid=None, *, alpha=None,
endconditions='natural')

Bases: splines.quaternion.KochanekBartels (page 166)

Catmull–Rom-like rotation spline.

This is just KochanekBartels (page 166) without TCB values.

See Uniform Catmull–Rom-Like Quaternion Splines (page 133) and Non-Uniform Catmull–Rom-Like
Rotation Splines (page 139).

class splines.quaternion.BarryGoldman(quaternions, grid=None, *, alpha=None)
Bases: object55

Rotation spline using Barry–Goldman algorithm.

Always closed (for now).

evaluate(t)
54 https://docs.python.org/3/library/functions.html#object
55 https://docs.python.org/3/library/functions.html#object

166

https://docs.python.org/3/library/functions.html#object

4 References

References

[BG88] Phillip J. Barry and Ronald N. Goldman. A recursive evaluation algorithm for a class of Cat-
mull–Rom splines. In 15th Annual Conference on Computer Graphics and Interactive Techniques,
199–204. 1988. doi:10.1145/54852.378511

56.

[CR74] Edwin Catmull and Raphael Rom. A class of local interpolating splines. In Robert E. Barn-
hill and Richard F. Riesenfeld, editors, Computer Aided Geometric Design, pages 317–326. Aca-
demic Press, 1974. doi:10.1016/B978-0-12-079050-0.50020-557.

[dB72] Carl de Boor. On calculating with B-splines. Journal of Approximation Theory, 6(1):50–62, 1972.
doi:10.1016/0021-9045(72)90080-958.

[dB78] Carl de Boor. A Practical Guide to Splines. Springer-Verlag, 1978. ISBN 978-0-387-95366-3.

[DEH89] Randall L. Dougherty, Alan S. Edelman, and James M. Hyman. Nonnegativity-,
monotonicity-, or convexity-preserving cubic and quintic Hermite interpolation. Mathematics
of Computation, 52(186):471–494, 1989. doi:10.1090/S0025-5718-1989-0962209-159.

[Fri82] Frederick N. Fritsch. Piecewise cubic Hermite interpolation package (final specifications).
Technical Report UCID-30194, Lawrence Livermore National Laboratory, CA (USA), 1982.
doi:10.2172/6838406

60.

[FB84] Frederick N. Fritsch and Judy Butland. A method for constructing local monotone piecewise
cubic interpolants. SIAM Journal on Scientific and Statistical Computing, 5(2):300–304, 1984.
doi:10.1137/0905021

61.

[FC80] Frederick N. Fritsch and Ralph E. Carlson. Monotone piecewise cubic interpolation. SIAM
Journal on Numerical Analysis, 17(2):238–246, 1980. doi:10.1137/0717021

62.

[GR74] William J. Gordon and Richard F. Riesenfeld. B-spline curves and surfaces. In Computer
Aided Geometric Design, pages 95–126. Academic Press, 1974. doi:10.1016/B978-0-12-079050-
0.50011-463.

[KKS95] Myoung-Jun Kim, Myung-Soo Kim, and Sung Yong Shin. A general construction scheme for
unit quaternion curves with simple high order derivatives. In SIGGRAPH: Computer graphics
and interactive techniques, 369–376. 1995. doi:10.1145/218380.218486

64.

[KB84] Doris H. U. Kochanek and Richard H. Bartels. Interpolating splines with local tension, con-
tinuity, and bias control. In 11th Annual Conference on Computer Graphics and Interactive Tech-
niques, 33–41. 1984. doi:10.1145/800031.808575

65.

[McD10] John McDonald. Teaching quaternions is not complex. Computer Graphics Forum,
29(8):2447–2455, 2010. doi:10.1111/j.1467-8659.2010.01756.x66.

56 https://doi.org/10.1145/54852.378511

57 https://doi.org/10.1016/B978-0-12-079050-0.50020-5

58 https://doi.org/10.1016/0021-9045(72)90080-9

59 https://doi.org/10.1090/S0025-5718-1989-0962209-1

60 https://doi.org/10.2172/6838406

61 https://doi.org/10.1137/0905021

62 https://doi.org/10.1137/0717021

63 https://doi.org/10.1016/B978-0-12-079050-0.50011-4

64 https://doi.org/10.1145/218380.218486

65 https://doi.org/10.1145/800031.808575

66 https://doi.org/10.1111/j.1467-8659.2010.01756.x

167

https://doi.org/10.1145/54852.378511
https://doi.org/10.1016/B978-0-12-079050-0.50020-5
https://doi.org/10.1016/0021-9045(72)90080-9
https://doi.org/10.1090/S0025-5718-1989-0962209-1
https://doi.org/10.2172/6838406
https://doi.org/10.1137/0905021
https://doi.org/10.1137/0717021
https://doi.org/10.1016/B978-0-12-079050-0.50011-4
https://doi.org/10.1016/B978-0-12-079050-0.50011-4
https://doi.org/10.1145/218380.218486
https://doi.org/10.1145/800031.808575
https://doi.org/10.1111/j.1467-8659.2010.01756.x

[Mil] Ian Millington. Matrices and conversions for uniform parametric curves. URL: https://web.
archive.org/web/20160305083440/http://therndguy.com.

[Mol04] Cleve B. Moler. Numerical Computing with MATLAB. Society for Industrial and Applied Math-
ematics, 2004. ISBN 978-0-89871-660-3. URL: https://www.mathworks.com/moler/index_
ncm.html.

[Ove68] Albert W. Overhauser. Analytic definition of curves and surfaces by parabolic blending.
Technical Report SL 68-40, Scientific Laboratory, Ford Motor Company, Dearborn, Michigan,
1968.

[Sho85] Ken Shoemake. Animating rotation with quaternion curves. SIGGRAPH Computer Graphics,
19(3):245–254, 1985. doi:10.1145/325165.325242

67.

[YSK11] Cem Yuksel, Scott Schaefer, and John Keyser. Parameterization and appli-
cations of Catmull–Rom curves. Computer-Aided Design, 43(7):747–755, 2011.
doi:10.1016/j.cad.2010.08.008

68.

67 https://doi.org/10.1145/325165.325242

68 https://doi.org/10.1016/j.cad.2010.08.008

168

https://web.archive.org/web/20160305083440/http://therndguy.com
https://web.archive.org/web/20160305083440/http://therndguy.com
https://www.mathworks.com/moler/index_ncm.html
https://www.mathworks.com/moler/index_ncm.html
https://doi.org/10.1145/325165.325242
https://doi.org/10.1016/j.cad.2010.08.008

	Polynomial Curves in Euclidean Space
	Polynomial Parametric Curves
	Lagrange Interpolation
	One-dimensional Example
	Neville’s Algorithm
	Two-dimensional Example
	Runge’s Phenomenon

	Hermite Splines
	Properties of Hermite Splines
	Uniform Cubic Hermite Splines
	Basis Matrix
	Basis Polynomials
	Example Plot
	Relation to Bézier Splines

	Non-Uniform Cubic Hermite Splines
	Basis Matrix
	Basis Polynomials
	Example Plot
	Utilizing the Uniform Basis Matrix

	Natural Splines
	Properties of Natural Splines
	Uniform Natural Splines
	End Conditions
	Natural
	Clamped
	Closed

	Solving the System of Equations

	Non-Uniform Natural Splines
	End Conditions

	Bézier Splines
	Properties of Bézier Splines
	De Casteljau’s Algorithm
	Preparations
	Degree 1 (Linear)
	Degree 2 (Quadratic)
	Quadratic Tangent Vectors

	Degree 3 (Cubic)
	Cubic Tangent Vectors
	Cubic Bézier to Hermite Segments

	Degree 4 (Quartic)
	Quartic Tangent Vectors

	Arbitrary Degree

	Non-Uniform Bézier Splines
	Tangent Vectors
	Control Points From Tangent Vectors

	Catmull–Rom Splines
	Properties of Catmull–Rom Splines
	Tangent Vectors
	Cusps and Self-Intersections
	Chordal Parameterization
	Centripetal Parameterization
	Parameterized Parameterization

	Uniform Catmull-Rom Splines
	Blending Functions
	Cardinal Functions
	Example Plot
	Basis Polynomials
	Basis Matrix
	Tangent Vectors
	Using Bézier Segments

	Non-Uniform Catmull–Rom Splines
	Tangent Vectors
	Using Non-Uniform Bézier Segments
	Animation

	Barry–Goldman Algorithm
	Triangular Schemes
	Neville’s Algorithm
	De Boor’s Algorithm
	Combining Both Algorithms
	Step by Step
	First Stage
	Second Stage
	Third Stage

	Tangent Vectors
	Animation

	Kochanek–Bartels Splines
	Properties of Kochanek–Bartels Splines
	Tension
	Continuity
	Bias
	Combinations

	Uniform Kochanek–Bartels Splines
	Parameters
	Tension
	Continuity
	Bias
	All Three Combined

	Calculation
	Basis Matrix
	Basis Polynomials

	Non-Uniform Kochanek–Bartels Splines

	End Conditions
	Natural End Conditions
	Begin
	End
	Example
	Bézier Control Points

	Piecewise Monotone Interpolation
	Examples
	Providing Slopes

	Generating and Modifying the Slopes at Segment Boundaries
	PCHIP/PCHIM
	More Examples
	Monotone Interpolation
	End Conditions
	Even More Examples

	Rotation Splines
	Quaternions
	Quaternion Representations
	Unit Quaternions
	Unit Quaternions as Rotations
	Axes Conventions
	Quaternion Multiplication
	Inverse
	Relative Rotation (Global Frame of Reference)
	Relative Rotation (Local Frame of Reference)
	Exponentiation
	Negation

	Spherical Linear Interpolation (Slerp)
	Derivation
	Visualization
	Piecewise Slerp
	Slerp vs. Nlerp

	De Casteljau’s Algorithm With Slerp
	“Cubic”
	Arbitrary “Degree”
	Constant Angular Speed
	Joining Curves

	Uniform Catmull–Rom-Like Quaternion Splines
	Relative Rotations
	Tangent Space
	Example
	Shoemake’s Approach

	Non-Uniform Catmull–Rom-Like Rotation Splines
	Parameterization

	Kochanek–Bartels-like Rotation Splines
	Examples

	“Natural” End Conditions
	Examples

	Barry–Goldman Algorithm With Slerp
	Constant Angular Speed

	Cumulative Form
	Piecewise Slerp
	Cumulative Bézier/Bernstein Curve
	Comparison with De Casteljau’s Algorithm

	Naive 4D Quaternion Interpolation
	Naive Interpolation of Euler Angles

	Python Module
	splines
	splines.quaternion

	References
	References

